《人工智能助力生物识别精准化》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-05-26
  • “你是谁?”在当今社会,无处不在的身份识别场景在无声发问。进小区门,要问你是业主本人吗?进家门,要扭动匹配的钥匙或按下指纹;开电脑工作,弹出密码输入弹窗。每个人都是独立的个体,我们能否使用唯一特性与外界建立联系?唯一意味着安全,也意味着核实更方便准确,就像我们的身份证,上面有唯一的数字编码。

    与此同时,数字化时代,我们与机器的互动,从敲键盘一步跨向手指点击滑动、开口对话、抬起头、眨眨眼,远隔千里的人们能便捷地沟通交流、能跨省跨国网上办事,但客观上无法实现“亲眼所见”,也给建立“信任”关系带来新的挑战。

    人工智能技术的发展,针对数字社会人与人之间、人与机器之间如何建立“信任”关系,提供了一个很好的技术解决手段,即生物识别技术。你用什么方式证明自己?怎样才能定义这世界独一无二的你?设备的进化中,谁在保证个人使用的安全性?无接触生活的背后都是技术在化解复杂,生物识别技术的研究,正是希望解决这些问题。

    1.生物识别是数字社会的重要基础

    无论处于哪个社会经济发展阶段,“人”始终是最重要的核心要素。人类作为群居动物,在地球上有人类的时刻,“信任”的需求就应运而生,通过视觉“亲眼所见”、听觉“亲耳所闻”等辨别同伴建立信任关系,这种最原始的通过“亲眼所见”等手段建立“信任”的方式也将伴随人类一直延续下去。

    数字化世界,需要迭代新的信任交互,生物识别技术是技术发展演进到一定阶段的必然产物,也是一种新型数字身份的基础设施。它基于个体生物特征进行自动识别的一种技术,结合计算机与光学、声学、生物传感器和生物统计学原理等,依靠人体的生理特征或者行为特征来进行身份验证的识别,是当前人工智能技术和信息安全技术在工业界落地应用最显著的代表性成果之一。

    所谓生物特征包括人脸、指纹、声纹、虹膜、指静脉、体温等,行为特征则记录签名笔迹、行走步态、坐姿等。这些生物特征各有特点,比如每个人的静脉血管都不是一样的,血管也足够多,因此它的信息唯一、丰富,几乎不能被复制;而一个人随着年龄增长和一些突发情况,行为特征比如走路姿态可能会发生变化,可以理解为特征信息稳定性不那么强。

    唯一的、稳定的生物特征就具备理论上的安全基础,我们将它们进一步结合形成有效技术手段,同时采用多种方式来确保它准确、高效就像使用身份证确认“你就是你”。

    作为一种身份认证方式,目前生物识别技术已经在金融、教育、司法、医疗、社会治理等行业都有了广泛应用,它需要满足不同场景、行业要求和不断变化演进的业务需求。它将迅速成为数字经济社会的重要信息基础设施之一。

    2.生物识别开始出现大规模技术创新

    从技术上来说,传统生物识别技术在鲁棒性、准确性以及抗攻击能力等方面,近年来都有大幅提升。比如突破2D人脸存在景深数据丢失的局限性,3D人脸识别技术因其具有更强的描述能力开始在高准确性应用中逐渐增多;在3D识别的基础上人脸活体检测的新技术也进一步被采用;防止人脸数据库被盗库的识别技术也已被提出;指纹识别则开始引入基于手指皮肤颜色和的脉搏心率信号的活体检验,用于防止被仿生导电材料做成的假手指攻击;声纹识别可结合使用电磁场检测,来判断声源为真人还是扬声器等。

    另一方面,考虑到应用场景的不同需求:持续认证、移动设备上识别、个人隐私保护等,新型生物识别技术也是应需而生。比如,浙江大学网络空间安全团队针对持续认证,开发了“心脏密码”系统通过不间断用生物雷达的无线信号来感知心脏运动,实现了易用性高的非接触式可持续认证;针对移动设备上的生物识别,利用设备内置摄像头捕捉到的眼球运动,智能手环上测量到的心电图,以及虚拟现实头罩测量到的眼电图和脑电波都相应的实现了可靠的生物识别;针对生物识别中的个人隐私保护,采用无线信号成像来代替摄像头,既避免了摄像头受视角和阻挡等条件的限制,更消除了直接获取图像的隐私泄露风险。

    另外,正如每种生物特征各有特点,在充分考虑各种攻击场景下,任何单一生物识别技术往往都呈现出特定的优势和局限。每个模态都具有不同的数据安全程度、采集适应场景、隐私敏感度等,因此解决方案并不能通过单一技术完全达成。

    多模态多因子生物识别技术融合因此非常重要。比如夜晚光照不理想,人像识别率低,结合红外成像和热成像的跨模态互补就能增强人像识别的准确度。像是蚂蚁金服多模态融合人脸识别技术实现用户的精准识别,满足金融级误识率(低至千万分之一误识率)下,大大超出了单模态人脸识别技术能达到的性能瓶颈,并提升了人脸识别的安全性。同时,还充分利用移动设备的芯片级安全能力,经过与产业链多方的合作,构造了基于TEE(可信执行环境)的全链路安全协议,为生物支付提供了强有力的安全保障。此外,通过风险感知模块检测黑产攻击,风控引擎自动更新风险模型,风险拦截效率大幅提升,充分保证了交易安全。

    未来生物识别技术的趋势便是如此,将会从传统的只提取人体生理特征,向人、物理世界、数字世界融合的认证方向发展。生物识别技术将在和环境特征、数字凭证相结合,满足时空关联、多模态多因子融合的基础上完全实现可信认证。

    3.“生物识别”“多模态融合”作为主流研究方向形成标准化的应用共识

    从实验室走向产业商用,从模型走向安全产品,靠的是持续生物识别技术迭代和多重技术算法的保障,尤其引起我们关注的是“安全和隐私保护”。

    基于这一点,去年,浙江大学和蚂蚁金服联合成立了数据安全与隐私保护实验室,汇集了双方创新力量和优势资源,产学研联合推进前沿科技研究,提升国内生物识别行业安全技术水平。

    目前针对人脸数据脱敏、不可逆、可更新、加密等做了大量研究,给生物识别信息保护提供可行的安全技术解决方案。部分安全技术已经转化应用到蚂蚁金服人脸识别技术上,支撑大量金融级安全应用。

    在生物识别技术突破最多的是人脸识别,即在图像特征抽取和人脸比对环节中取得了很大进展。但从实验室之外的实际场景应用模拟发现,其影响因素很多。从全链路的角度来看,活体检测、人脸交互、关键点定位、人脸跟踪等在真实的场景下,特别是不同的手机、环境、用户背景等条件下,想做到非常好并且稳定的用户体验是很难的。我们对此进行了很多特殊的优化,如使算法在不同的手机上达到比较一致的运算速度、响应时间,通过文案设计提高用户对刷脸的感知和理解,适应用户背景(如光线、角度等),分析基于其他传感器数据的反馈等。同时企业根据自身业务的不断发展,向学术界持续反馈新的需求,也反过来促进了联合实验室在新技术前沿开拓的方向感和紧迫感,产学研联动形成良性闭环发展。

    基于我们共同进行的大量研究、实践积累,近期企业已在IEEE成立“移动设备生物特征识别”标准工作组,并立项“生物特征识别多模态融合”IEEE国际标准。这也是中国企业首次在国际标准中,提出移动设备多模态融合技术的实现框架、功能要求、性能要求、安全要求等。这意味着,“生物识别”、“多模态融合”作为主流研究方向将形成标准化的应用共识。这也是一项技术脱离实验室踏上商用之路的重要一步,有利于推动行业平均技术发展水平。而国际标准是国际规则和共识重要通用载体,对整个行业良性发展至关重要,也是具备技术实力的中国企业必须具备发言权之处。毫无疑问,高校和企业在生物识别这类国际前沿技术及标准上的探索,是中国科技布局眼光、研究能力、科学严谨性的综合体现。它同样预示着,中国企业在人工智能技术领域的国际竞争进入新阶段——从产品出海到技术走出去,如今又向输出全球标准迈进。

相关报告
  • 《人工智能助力酶活性预测》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2019-05-03
    • 2018年11月18日《自然-化学生物学》报道,英国牛津大学研究人员发现了可以预测酶活性的一般方法,这个新颖的AI方法基于酶的序列,以及定义明确的底物“训练集”和正确的化学参数。 酶是许多药物的重要靶标。科学家如果可以预测其功能,就可以有目的性地用小分子抑制这些功能,治疗疾病。该研究对全面了解生物学和人类健康很重要。 研究人员从一种植物中提取了一整个酶系,结合相应基因的酶的高通量表达,通过定量、无标签质谱法筛选其酶活性。对酶初级序列的简单分析没有完成完整的活性预测模式,而与牛津大学机器学习小组的AI技术相结合,标准化学描述符可以推导出一个强大的预测系统。 而且,这种方法不会成为“黑匣子”,在为化学家/生物学家提供成功预测的同时,还将为那些具有化学和生物学意义的预测提供解释。该方法还有助于找出哪些酶可用于合成,预测来自不同物种(甚至是细菌)的酶的活性,以及如何以一种全新的方式来设计酶。 这是一个非常强大的研究发现引擎。研究者认为人工智能与酶活性的结合将成为下一个研究前沿。 这一重大进展使成功的蛋白质催化剂活性预测成为可能,这将对包括医学研究在内的许多领域产生了重要影响。这是一个比小分子催化剂建模更具挑战性的领域,而小分子催化剂一直被认为是机器学习/化学的顶峰。
  • 《中国科学家实现基底细胞癌4.1秒人工智能精准识别》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-03-28
    • 近日,Airdoc人工智能算法团队与中国医学科学院皮肤病医院、密歇根大学计算医学与生物信息学系合作发布了最新的研究成果,已发表在《英国皮肤病学杂志》。此次研究中,中国科学家通过人工智能算法深入学习研究,构建出基于智能手机采集的目镜切片图像实现基底细胞癌的自动识别和分割。此分割模型较之前学术圈公布的同类模型在特异性敏感性都有大幅提升。 据了解,基底细胞癌是发病率最高的皮肤癌,也是人类最为常见的恶性肿瘤之一。除黑色素瘤以外的皮肤癌中,约80%都是基底细胞癌。由于发病率高,皮肤病理医生每天都在跟基底细胞癌的病理切片打交道,工作量很大,而在基底细胞癌Mohs手术后判断肿瘤切缘是否干净时,类似的工作量更是大大地增加。 由姜祎群和李洪阳领衔的研究团队使用了ResNet50和DeepLabV3对基底细胞癌的切片图像进行癌变识别,和传统研究使用高清扫描切片作为识别对象不同,本次研究识别的切片图像来自于智能手机通过目镜拍摄所得。 研究人员在三种类型的图像来源上建立了三个分类模型(分别针对:10X高清扫描切片、40X高清扫描切片和10X目镜切片图像)和一个分割模型,得出目镜切片图像的结果与高清扫描切片具有可比性,建立的模型AUC达到0.98,并且能在不同类型的测试数据集上达到0.93的AUC,泛化性非常好。 这种模型是以后推广使用价格低廉的目镜图片拍摄进行基底细胞癌检测的一种有效办法,可以减少购买高成本的扫描仪器,与此同时提供快速、准确的识别癌组织。 为方便不同场景的应用,科研团队研发出三种不同的系统。第一种Segmentation-basedBCCrecognitionsystem,可以自动识别出癌组织,并在图像中标识清楚,花费时间约为16秒,能够达到专家同等识别能力。 第二种Classification-basedBCCrecognitionsystem,有无癌组织分类,直接反馈识别结果,实现在高精度前提下的高速识别,花费时间仅需500毫秒。 第三种CascadeBCCrecognitionsystem,具备以上两种系统功能,并增添一个自动判断模块,在识别癌细胞前对图像进行分类处理,在保持最高精准识别度的前提下,选择适合的识别方法,从而提高识别速度,仅需4.1秒即可完成。 本次研究首次实现利用智能手机自带相机拍摄MOI,建立神经网络模型自动识别基底细胞癌,成功将人工智能深度学习算法引入到基底细胞癌的识别中,通过算法自动化识别,减少人力工作和不同地区、不同诊断医生之间的诊断差别让基底细胞癌患者得到更好更快更专业的治疗,对推进基底细胞癌的研究有重大意义。