《Science | 部分自合成生化网络中的综合翻译和新陈代谢》

  • 编译者: 李康音
  • 发布时间:2024-07-19
  • 2024年7月11日, 马克斯-普朗克陆地微生物研究所的研究人员在Science发表题为Integrated translation and metabolism in a partially self-synthesizing biochemical network的文章。

    生物体的标志之一是其自我组织和再生能力,这需要新陈代谢和遗传网络的紧密结合。研究人员试图在体外构建一个关联的代谢和遗传网络,它能在细胞环境之外显示出这种栩栩如生的行为,并能从非生物物质中生成自己的构建模块。

    研究人员利用重组元件将巴豆酰-CoA/乙基丙二酰-CoA/羟丁酰-CoA 循环代谢与无细胞蛋白质合成整合在一起。该研究的网络从二氧化碳中产生氨基酸甘氨酸,并按照 DNA 编码的指令将其整合到目标蛋白质中。通过协调约 50 种酶类,研究人员建立了一个基本的无细胞操作系统,在该系统中,基因编码输入代谢网络的程序可激活反馈回路,从而实现整个系统的自我整合和(部分)自我再生。

相关报告
  • 《Science | 控制新陈代谢和食物摄入的综合神经回路》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-01
    • 2023年9月29日,德国马克斯·普朗克代谢研究所的研究人员在Science上发表题为Integrative neurocircuits that control metabolism and food intake的文章。 系统代谢必须不断调整,以适应食物摄入的变化,甚至为预期的营养可用性变化做好准备。因此,大脑整合了多种体内平衡信号和许多线索,以预测未来能量供应的偏差。该研究对这些调节原理背后的神经通路的理解——以及它们在下丘脑作为食物摄入、能量消耗和葡萄糖代谢的关键协调者的收敛——已经被揭示出来。这些进展改变了我们对代谢生理学脑依赖控制的看法。在这篇综述中,研究人员讨论了这些通路的改变如何促进肥胖和2型糖尿病等普遍代谢性疾病的发展的新概念,以及这些新知识如何为治疗这些疾病提供新的靶点。 本文内容转载自“ CNS推送BioMed”微信公众号。 原文链接: https://mp.weixin.qq.com/s/AvwJV4FamFRwxYp11f9suw
  • 《Science | 翻译与氧化应激在细菌中的研究》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-10
    • 2024年4月5日,美国科罗拉多大学医学院免疫与微生物学系Andres Vazquez-Torres团队在Science上发表了一篇题为Prophage terminase with tRNase activity sensitizes Salmonella enterica to oxidative stress的论文。 氧化应激对所有生命领域都施加了巨大的选择压力。在哺乳动物的先天免疫系统中,细胞内的细菌病原体(如沙门氏菌)暴露于高浓度的活性氧物质(ROS)中,这些物质是由吞噬细胞NADPH氧化酶的呼吸爆发产生的。 ROS的毒性浓度损伤了核苷酸、金属辅因子和含硫氨基酸,同时氧化了生物合成酶,导致对芳香族和支链氨基酸的功能性营养缺乏。这种情况触发了细菌中的一种严格应答的生理反应,以减缓生长速度并调整代谢途径。 文章描述了一个嵌合噬菌体,在氧化应激条件下,通过一个脱氧核糖核酸酶(DNase)的交替转移核糖核酸酶(tRNase)功能抑制沙门氏菌的翻译。在沙门氏菌中,Gifsy-1嵌合噬菌体的终止酶蛋白,在氧化应激下意外地表现出转移核糖核酸酶(tRNase)的功能,裂解tRNALeu的抗密码环。这种RNA碎裂影响了细菌的翻译、细胞内存活和在动物宿主中对氧化应激的恢复。沙门氏菌通过转录RNA修复Rtc系统来适应tRNA碎裂,这种违反直觉的翻译阻滞可能会抑制嵌合噬菌体的传播,为宿主提供修复的机会,以维持细菌基因组的完整性,并最终在动物体内存活。