《Nature,4月7日,SARS-CoV-2 detection in patients with influenza-like illness》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-04-08
  • SARS-CoV-2 detection in patients with influenza-like illness

    Wen-Hua Kong, Yao Li, Ming-Wei Peng, De-Guang Kong, Xiao-Bing Yang, Leyi Wang & Man-Qing Liu

    Nature Microbiology (2020)

    Abstract

    Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in Wuhan, Hubei Province, China in late December 2019. We re-analysed 640 throat swabs collected from patients in Wuhan with influenza-like-illness from 6 October 2019 to 21 January 2020 and found that 9 of the 640 throat swabs were positive for SARS-CoV-2 RNA by quantitative PCR, suggesting community transmission of SARS-CoV2 in Wuhan in early January 2020.

  • 原文来源:https://www.nature.com/articles/s41564-020-0713-1
相关报告
  • 《Nature,4月16日,CRISPR–Cas12-based detection of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-17
    • CRISPR–Cas12-based detection of SARS-CoV-2 James P. Broughton, Xianding Deng, Guixia Yu, Clare L. Fasching, Venice Servellita, Jasmeet Singh, Xin Miao, Jessica A. Streithorst, Andrea Granados, Alicia Sotomayor-Gonzalez, Kelsey Zorn, Allan Gopez, Elaine Hsu, Wei Gu, Steve Miller, Chao-Yang Pan, Hugo Guevara, Debra A. Wadford, Janice S. Chen & Charles Y. Chiu Nature Biotechnology (2020) Abstract An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR–Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections.
  • 《Nature,4月7日,SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-08
    • SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion Xinling Wang, Wei Xu, Gaowei Hu, Shuai Xia, Zhiping Sun, Zezhong Liu, Youhua Xie, Rong Zhang, Shibo Jiang & Lu Lu Cellular & Molecular Immunology (2020) COVID-19, the novel coronavirus disease caused by SARS-CoV-2 and outbroken at the end of 2019 in Wuhan, China,1 becomes a worldwide pandemic. SARS-CoV-2 belongs to the betacoronavirus genus and has 79.5% identity to SARS-CoV. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as its host entry receptor.2 The clinical manifestations of COVID-19 include pneumonia, diarrhea, dyspnea, and multiple organ failure. Interestingly, lymphocytopenia, as a diagnostic indicator, is common in COVID-19 patients. Xiong et al. found upregulation of apoptosis, autophagy, and p53 pathways in PBMC of COVID-19 patients.3 Some studies reported that lymphocytopenia might be related to mortality, especially in patients with low levels of CD3+, CD4+, and CD8+ T lymphocytes.