《Nature,4月16日,CRISPR–Cas12-based detection of SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-04-17
  • CRISPR–Cas12-based detection of SARS-CoV-2

    James P. Broughton, Xianding Deng, Guixia Yu, Clare L. Fasching, Venice Servellita, Jasmeet Singh, Xin Miao, Jessica A. Streithorst, Andrea Granados, Alicia Sotomayor-Gonzalez, Kelsey Zorn, Allan Gopez, Elaine Hsu, Wei Gu, Steve Miller, Chao-Yang Pan, Hugo Guevara, Debra A. Wadford, Janice S. Chen & Charles Y. Chiu

    Nature Biotechnology (2020)

    Abstract

    An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR–Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections.

  • 原文来源:https://www.nature.com/articles/s41587-020-0513-4
相关报告
  • 《Nature,5月19日,SARS-CoV-2 detection with CRISPR diagnostics》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-20
    • SARS-CoV-2 detection with CRISPR diagnostics Lu Guo, Xuehan Sun, Xinge Wang, Chen Liang, Haiping Jiang, Qingqin Gao, Moyu Dai, Bin Qu, Sen Fang, Yihuan Mao, Yangcan Chen, Guihai Feng, Qi Gu, Ruiqi Rachel Wang, Qi Zhou & Wei Li Cell Discovery volume 6, Article number: 34 (2020) The novel coronavirus (CoV) disease termed COVID-19 (coronavirus disease-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2)1 is causing a massive pandemic worldwide, threatening public health systems across the globe. During this ongoing COVID-19 outbreak, nucleic-acid detection has played an important role in early diagnosis2. To date, four protocols based on CRISPR for detecting SARS-CoV-2 have been published3,4,5,6. Using lateral flow protocols, RNA samples harboring more than 1 × 104–1 × 105 copies/mL (SHERLOCK) or 1 × 104 copies/mL (DETECTR) can be detected within 1 hour. In addition to these reported efforts, we have also established a SARS-CoV-2 detection protocol based on our previously reported platform—CDetection (Cas12b-mediated DNA detection)7. By combining sample treatment protocols and nucleic-acid amplification methods with CDetection, we have established an integrated viral nucleic-acid detection platform—CASdetec (CRISPR-assisted detection).
  • 《Nature,8月26日,Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-09-02
    • Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA Maturada Patchsung, Krittapas Jantarug, […]Chayasith Uttamapinant Nature Biomedical Engineering (2020) Abstract Nucleic acid detection by isothermal amplification and the collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative PCR. Here, we report the clinical validation of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the virus that causes coronavirus disease 2019 (COVID-19)—in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per reaction, SHERLOCK was 100% specific and 100% sensitive with a fluorescence readout, and 100% specific and 97% sensitive with a lateral-flow readout. For the full range of viral load in the clinical samples, the fluorescence readout was 100% specific and 96% sensitive. For 380 SARS-CoV-2-negative pre-operative samples from patients undergoing surgery, SHERLOCK was in 100% agreement with quantitative PCR with reverse transcription. The assay, which we show is amenable to multiplexed detection in a single lateral-flow strip incorporating an internal control for ribonuclease contamination, should facilitate SARS-CoV-2 detection in settings with limited resources.