《Nature,4月29日,Population flow drives spatio-temporal distribution of COVID-19 in China》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-04-30
  • Population flow drives spatio-temporal distribution of COVID-19 in China

    Jayson S. Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia & Nicholas A. Christakis

    Nature (2020)

    Abstract

    Sudden, large-scale, and diffuse human migration can amplify localized outbreaks into widespread epidemics.1–4 Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here, we use mobile-phone-data-based counts of 11,478,484 people egressing or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographic distribution of COVID-19 infections through February 19, 2020, across all of China.

  • 原文来源:https://www.nature.com/articles/s41586-020-2284-y
相关报告
  • 《4月29日_人口流动驱动中国COVID-19的时空分布》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-01
    • 信息名称:人口流动驱动中国COVID-19的时空分布 1.时间:2020年4月29日 2.机构或团队:香港大学、中国人民解放军国防科技大学、卡罗林斯卡学院、西南交通大学、湖南工商大学、深圳市人工智能与机器人研究院、耶鲁大学 3.事件概要: 香港大学联合多家机构在Nature发表论文“Population flow drives spatio-temporal distribution of COVID-19 in China”。文章旨在探究大规模的人口迁移对中国流行病学的影响。 大规模的人类迁徙可能将局部暴发扩大为广泛流行,因此文章基于移动电话统计了2020年1月1日至1月24日期间,从武汉迁出或过境,迁移到全国其他296个地级市的11,478,484人的数据,以探究武汉市大规模人口迁移对中国流行病学的影响。分析结果显示:(1)隔离可以有效控制疫情传播;(2)截至2020年2月19日为止,基于武汉市人口外流的分布可准确地预测中国各地COVID-19感染的相对频率和地理分布;(3)利用人口流动数据,开发的时空“风险源”模型不仅可以预测确诊病例,而且可在早期识别高传播风险地区;(4)利用该风险源模型,可以统计推导出COVID-19的地理分布和基于武汉人口外流的增长模式。文章认为,任何国家的决策者都可以使用这种方法,利用现有的数据进行快速和准确的风险评估,并在正在发生的疫情之前规划有限资源的分配。 4.附件: 原文链接:https://www.nature.com/articles/s41586-020-2284-y
  • 《Nature,3月29日,The spatial landscape of lung pathology during COVID-19 progression》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-30
    • The spatial landscape of lung pathology during COVID-19 progression André F. Rendeiro, Hiranmayi Ravichandran, Yaron Bram, Vasuretha Chandar, Junbum Kim, Cem Meydan, Jiwoon Park, Jonathan Foox, Tyler Hether, Sarah Warren, Youngmi Kim, Jason Reeves, Steven Salvatore, Christopher E. Mason, Eric C. Swanson, Alain C. Borczuk, Olivier Elemento & Robert E. Schwartz Nature (2021) Abstract Recent studies have provided insights into the pathology and immune response to coronavirus disease 2019 (COVID-19)1–8. However, thorough interrogation of the interplay between infected cells and the immune system at sites of infection is lacking. We use high parameter imaging mass cytometry9 targeting the expression of 36 proteins, to investigate at single cell resolution, the cellular composition and spatial architecture of human acute lung injury including SARS-CoV-2. This spatially resolved, single-cell data unravels the disordered structure of the infected and injured lung alongside the distribution of extensive immune infiltration. Neutrophil and macrophage infiltration are hallmarks of bacterial pneumonia and COVID-19, respectively. We provide evidence that SARS-CoV-2 infects predominantly alveolar epithelial cells and induces a localized hyper-inflammatory cell state associated with lung damage. By leveraging the temporal range of COVID-19 severe fatal disease in relation to the time of symptom onset, we observe increased macrophage extravasation, mesenchymal cells, and fibroblasts abundance concomitant with increased proximity between these cell types as the disease progresses, possibly as an attempt to repair the damaged lung tissue. This spatially resolved single-cell data allowed us to develop a biologically interpretable landscape of lung pathology from a structural, immunological and clinical standpoint. This spatial single-cell landscape enabled the pathophysiological characterization of the human lung from its macroscopic presentation to the single-cell, providing an important basis for the understanding of COVID-19, and lung pathology in general.