《Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method》

  • 来源专题:广州能源研究所信息监测
  • 编译者: giecinfo
  • 发布时间:2016-03-14
  • A series of supported WO3/TiO2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH)2 and (NH4)10W12O41*5H2O slurry under controlled pH conditions. The morphological properties, surface WOx molecular structures, surface acidity and surface chemistry of the co-precipitated WO3/TiO2 catalysts were determined with BET, in situ Raman, in situ IR, steady-state NO/NH3/O2 SCR and NO/NH3-temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Time-resolved isotopic 18O–16O exchange with IR spectroscopy demonstrated that tungsten oxide was present as surface WOx sites on the TiO2 support with mono-oxo O = WO4 coordination. In contrast to previous studies employing impregnation synthesis that found only surface one mono-oxo O = WO4 site (1010–1016 cm−1) on TiO2, the co-precipitation procedure resulted in the formation of two distinct surface WOx sites: mono-oxo O = WO4 (∼1012–1014 cm−1) and a second mono-oxo O = WO4 (∼983–985 cm−1). The new surface mono-oxo O = WO4 (∼983–985 cm−1) site is thought to be associated with surface defects on the co-precipitated titania support. The co-precipitated catalysts exhibited slightly enhanced SCR reactivity that is thought to be related to the presence of the new surface O = WO4 sites. Additional factors, however, may also be contributing. This is the first study that attempts to relate the molecular level structural properties of co-precipitated WO3-TiO2 catalysts with their surface reactivity for SCR.

相关报告
  • 《Selective catalytic reduction of NOx with H2 over WO3 promoted Pt/TiO2 catalyst》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-03-14
    • Pt/TiO2 and WO3 modified Pt/TiO2 catalysts have been investigated for the selective catalytic reduction of NOx by H2 (H2-SCR) in the presence of oxygen. It was found that the addition of WO3 leads to a significant promoting effect on the low-temperature activity of Pt/TiO2 catalyst and the optimal loading is 2%. X-ray absorption near-edge structure (XANES) revealed the electron transfer from WO3 to Pt active sites, leading to the formation of metallic Pt, which is responsible for the low-temperature H2-SCR of NOx. In-situ DRIFTS demonstrated that the introduction of WO3 to Pt catalyst not only contributes to the formation of reactive adsorbed NOx species on the catalyst, but also promotes the formation of NH4+ species. All of these factors, collectively, account for the improved low-temperature activity of Pt-WO3/TiO2 catalyst.
  • 《喷灌和沟灌方式对农田土壤NH3挥发的影响》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2019-04-11
    • 研究了2016和2017年传统灌溉(沟灌)和节水灌溉(喷灌)方式氨(NH3)挥发的季节年际动态变化特征及其影响因素.采用通气法进行原位监测,分析了土壤温度、体积含水量、铵态氮(NH4+-N)、硝态氮(NO3--N)以及气温降水等因素对NH3挥发的影响.结果表明,NH3挥发速率的峰值出现在施用氮肥后1~2周,喷灌有效降低NH3挥发峰值,喷灌和沟灌的NH3挥发速率峰值在2016年分别为2.67kg/(hm2·d)和11.11kg/(hm2·d),2017年分别为2.42kg/(hm2·d)和11.73kg/(hm2·d);马铃薯生长季NH3挥发存在明显的季节变化,挥发高峰主要发生在7~8月,追肥期高于基肥期.2016~2017年农田土壤NH3累积挥发量均表现为喷灌<沟灌,与沟灌相比,喷灌分别减少58.15%和43.55%.NH3挥发速率与土壤温度呈显著正相关(P<0.05),与体积含水量、NH4+-N、NO3--N浓度呈极显著正相关(P<0.01).