《日本产业技术综合研究所(AIST)开发了可以精确测量工业机械零件形状的新技术》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2024-10-11
  • 近日,研究员渡边栗仁、研究组组长佐藤修、松崎和也、高级研究员宇岛麻理子、副研究部余一渡边司和日本产业技术综合研究所(AIST)名誉研究员 Toshiyuki Takatsuji 共同开发了一种可以精确测量工业机械零件弯曲形状参数的技术。

    一些工业机械零件需要以微米级的精度进行加工。例如,在发电机和引擎中使用的涡轮叶片,如果存在制造误差,即使是与设计形状最微小的偏差,它不仅会影响发电效率和旋转效率,而且可能成为运行时故障的原因。 因此,需要使用三维坐标测量机(Coordinate Measuring Machine; CMM)精密评估成型零件的形状。然而,当使用接触式CMM测量具有毫米以下曲率半径的曲面形状时,由于使用半径约为 1 毫米的有限尺寸的探针球进行测量的缘故,可能会出现几微米的误差。

    现在研究人员开发了一种技术,通过将图像处理中的噪声去除和用于表面粗糙度测量的形态学处理方法应用于接触式CMM测量,将测量的变异性降低到亚微米级。此外,我们将这项技术应用于涡轮叶片的断面形状测量,并证实了测量变异性的降低。预计这将提高工业机械零件形状评估的可靠性,并有助于保证零件加工质量的精度和安全性等。

    一些工业机械零件的形状会影响工业机械的整体性能。特别是小型零件,往往需要以微米级的精度进行加工。例如,涡轮叶片不仅表面需要光滑,而且边缘的形状也会极大地影响通过涡轮机的气体流动。 如果与理想设计形状的偏差过大,气体的流动就会受到干扰,不仅会降低涡轮的发电效率和旋转效率,还可能引起叶片损坏等问题。因此,工业机械零件的形状评估对于保证以安全性为基础的工业机械性能至关重要。

    对于工业机械零件的形状评估,通常使用CMM(坐标测量机)。特别是接触式CMM因其高精度和能够测量复杂形状而被广泛使用。然而,如果评估对象包含曲率半径较小的形状,传统方法可能会错误地估计接触式 CMM 的探针球半径校正方向,导致测量变异性达到几微米,从而得到与实际形状不符的测量结果。为了确保工业机械的安全性,必须评估加工精度是否满足要求。因此,由于测量值的变化,即使实际上是符合的形状也可能被评估为不符合,这可能会导致不必要的成本增加。

    AIST一直致力于确保工业机械零件等三维形状测量的准确性,并已经开发了评估齿轮形状测量精度的方法和评估3D打印机成型精度的方法。此外,近年来,随随着汽车产业质量管理系统标准IATF16949的发布,对工业机械零件的质量要求变得越来越严格。因此,研究所扩大了测量对象,包括涡轮叶片等各种各样的工业机械零件,并一直在推进技术开发以提高形状测量的可靠性。

    为了确保工业机械零件的加工精度,需要使用接触式 CMM 进行高精度地形状评估。 特别是曲率半径小的曲面形状变化很大,因此需要以密集的间隔进行测量。 在使用接触式CMM进行测量时,会获取探针球接触被测物时的中心位置。 在传统方法中,通过计算垂直于连接相邻探针球中心位置的直线或平面的方向来估计探针球半径需要校正的方向,并在该方向上进行探针半径校正。然而,由于接触式三坐标测量机的机械误差导致采集的探针球的中心位置包含亚微米级的噪声,相邻探针球中心位置构成的直线会倾斜,补偿探针半径的方向也会偏移,导致测量偏差可能会达到几微米。

    此时,测量曲率半径为几毫米或更小的曲面形状的间隔越细密,相邻探针球中心位置形成的直线偏差就越大。

    因此,AIST开发了一种方法,将图像处理和表面粗糙度测量中使用的形态学处理应用于接触式CMM的测量值,并修正探针半径。在形态学处理中,通过向图像数据中添加或删减某些特定形状(例如圆形),进行去除噪声或强调轮廓的处理。在本研究中,假设探针球是一个完美的圆,研究人员通过计算从探针球中心位置生成的与圆形形状相切的曲线来估计被测物体的形状。新方法与传统方法的不同之处在于,它消除了在探针球通过的区域内需要进行探针半径校正的步骤,从而减少了测量数据的误差。

    此次开发的接触式 CMM 测量的探头半径校正方法,除了用于涡轮叶片之外,还可以用于工业机械部件的形状评估。为了实现更精确的零部件形状评估,研究人员将进一步拓展该项目的研究成果,假设探针球不是一个完美的圆,并将探针球的实际形状纳入计算中,以进一步提高弯曲形状的测量精度。

    这项研究成果的详细说明已于2024年9月11日在《Precision Engineering》上在线发表。(DOI:10.1016/j.precisioneng.2024.09.009)

  • 原文来源:https://www.aist.go.jp/aist_j/press_release/pr2024/pr20241003/pr20241003.html
相关报告
  • 《日本产业技术综合研究所(AIST)先进电池领域调研分析》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-12-23
    • 国立研究开发法人产业技术综合研究所(英文为National Institute of Advanced Industrial Science and Technology,简称“AIST”)作为日本最大的公共研究机构,专注于研发有利于日本产业和社会发展的技术及其产业化问题,起到将革新技术与产业化连结起来的“桥梁”作用,同时还与世界各国的主要研究机构签订合作备忘录,构建积极的全球合作网络。目前产业技术综合研究所在日本的研究据点有11个,拥有约2300名研究人员。 英文名称:Research Institute of Electrochemical Energy 中文译名:电池技术研究部 总体研究内容: 1、先进产业技术的提出,包括新产业技术种子(对推进研究开发有必要性的发明技术、能力、人才、设备等)的提出、高风险技术的实验证明等。 2、产业基础技术的提供,包括国际工业标准、材料·性能评价技术、寿命预测等。 3、核心竞争力的强化,包括纳米材料学、应用表面科学、材料开发方法论等。 研究课题 电池技术研究部主要研究的课题共13个,其中与电池相关的课题共9个,具体内容如下: 1.使用固体高分子电解质开发电化学器件电极(获日本“电化学学会女性跃进奖”) ①对环境友好的、安全的直接燃料电池方面的提案 给固体高分子型燃料电池供应甲醇等氢以外的燃料、在电极上直接氧化发电的直接燃料电池有望作为可移动电源和移动终端的充电器实现部分实用化和可利用化。日本产业技术综合研究所开发了以抗坏血酸(维他命C)为燃料的直接燃料电池。这种燃料电池不使用氢和甲醇,燃料极反应与摄取抗坏血酸时在生物体内产生的代谢反应相同,是安全无害的燃料电池。而且,抗坏血酸的氧化具有不必使用贵金属催化剂、可在电极上使用表面积大的碳材料这一特征。 ②金属空气蓄电池的固体高分子型空气电极 金属空气电池因具有高能密度,作为创新性车载蓄电池,有望实现其蓄电池化。空气电极被指出具有过电压较大、有碱性电解液的电极润湿和电解液泄露的危险、因空气中的二氧化碳而在气体扩散电极细孔内会出现碳酸盐沉淀等问题。为了改善这些问题并大幅度提高性能,电池技术研究部提出了使用阴离子交换膜及其离子聚合物的固体高分子型空气电极,作出了抑制因空气中的二氧化碳产生的性能低下以及防止液漏的可能性的报告。 ③基于化学镀层技术的高分子作动器元件 90年代,旧大阪工业技术研究所开发出了使用特殊的化学镀层法使高分子电解质膜的两面直接析出白金的、并利用了给电极接合体在水中施加电位这一现象的高分子作动器。但是,因水的电分解而产生的气泡问题成为了待解决的课题。于是,电池技术研究部着眼于根据把电极从白金变为金来扩大电位窗这一内容,通过对金属络合物和还原剂的大力研究,成功在高分子电解质膜的两面形成了平均的金电极层,与原来使用白金电极的作动器相比,在没有气体产生的情况下可形成大的弯曲。 ④化学镀层(吸附反应)下的膜电极接合体制造技术 利用化学镀层法来制造膜电极结合体的技术原本是因固体高分子型电解水制氢法在旧大阪工业技术试验所开发出的技术。此方法是在膜中吸附金属络合物,用还原剂在高分子电解质膜的表面使白金直接析出的方法,具有粘着性高、在高电流密度操作下不易产生气体等特点。 2.全固态锂电池的固-固界面结构技术 ①根据固体电解质的微细化·均匀分散来制造良好的复合电极 利用Li2S-P2S5固体电解质在加压条件下可常温烧结的特性,通过固体电解质的微细化和室温成型(常温加压烧结),电池技术研究部开发了在产业上更加方便使用的密集电极层的制作工艺。该研究部通过各种各样的方法探讨了固体电解质的粒子形状控制,并通过均匀分散硫化物固体电解质、改善电极的同质性、增大电极-电解质的接触面积、使电极层变得高密度化(减小空隙)、在正极活性物质(氧化物)粒子的接触处产生局部应力的方法,减少正极活性物质粒子的破碎。低弹性系数和可以假塑性变形的硫化物固体电解质作为控制向电极活性物质粒子进行应力集中的缓冲层起到了不错的效果。 ②全固态锂硫电池 日本产业技术综合研究所使用已开发的易于成型的高容量电极活性物质Li3NbS4,开发出了利用Li2S-P2S5固体电解质的全固态蓄电池。因为Li3NbS4是通过常温加压烧结可以假塑性变形的材料,所以在室温下的加压成型过程中加压的同时,可形成90%以上的致密成型体。即使充放电时产生大约30%的体积变化,也不产生裂缝,可实现380mAh g-1的可逆充放电并有望发现其良好的循环特性。 3.新制造工艺下抑制LiNiO2退化 虽然镍酸锂作为高容量锂离子蓄电池正极材料被抱有期待,但是在高电位充电时周期退化严重,无法充分灵活运用其特性。在目前为止对LiFeO2-Li2MnO3正极材料研究成果的基础上,通过新的制造工艺(Li2NiO3热分解法)的应用,开发出了可保持高容量(>190mAh/g)并大幅抑制了周期退化的锂过量镍酸锂正极材料。 今后的计划:在研究数据的基础上,寻找正极材料开发合作伙伴,并向电池制造商提供供应。并且,为了进一步改善电池特性,电池技术研究部将进行制造方法的探讨以及异金属置换效果的探讨。另外,该部门也将继续进行LiFeO2-Li2MnO3正极材料的开发以及大型锂离子蓄电池使用的价格便宜且高性能的正极材料的开发。 4.利用NMR开发电池材料测评技术 电池技术研究部在广泛应用于有机结构鉴别的NMR(核磁共振)技术上添加了“倾斜磁场”和“电场”,并正在测定作为与电池中存在的离子(阴离子、阳离子)“动向”相关的物性的扩散系数(m2s-1)和移动率(m2s-1V-1)。而且,该部门也在进行使用了扩散系数和导电率数据的解析,对决定了溶解于电解质的锂盐的解离度和离子移动率大小的相互作用力等内容进行预测,并对把它们作为指标的电解质和分离器结构进行设计和提案。 5.探索镁蓄电池结构材料 如果能够把轻便的多价金属且在资源上也较为丰富的镁(Mg)作为负极来利用,就可以制造出储能密度高、成本小且较为安全的电池。但是,把Mg应用于可充放电的蓄电池还在基础研究阶段,处于必须探索开发可充放电的正负极材料和适用于两极的电解液的现状。日本产业技术综合研究所发现了某种作为Mg电池的正极材料可进行可逆反应、且作为蓄电池可在室温下进行操作的有机物,同时研究了适用于此电池的电解液,改善了充放电的效果。 电池技术研究部还进行了关于“使用乙二醇二甲醚类电解液的有机物-镁二次电池的充放电特性”的研究。该项研究首次报告了有机物可以使用在镁二次电池的正极中。该研究团队发现,将该有机正极与金属镁负极、乙二醇二甲醚类镁电解液进行组合后,可以实现室温下约接近2V的放电电压,且能够进行反复的充放电。 6.开发金属多硫化物正极材料(下一代高能量密度蓄电池用电极材料的开发) 目前,能够应用在电动汽车上的、能量密度显著提高的下一代蓄电池的开发备受期待。日本产业技术综合研究所开发了结晶度较低的金属多硫化物材料,并发现这种材料拥有一种新奇的充放电机制,是一种高容量电极材料。 该研究部门开发的新材料与传统材料相比,不仅金属能够进行氧化还原,硫也可以,因此可以飞跃性地提高电池的容量。 7.实际电极中离子传导率、电子传导率测定方法研究 蓄电池、燃料电池、电容器中使用的电极是由电子导体和离子导体(电解质)组成的复合体,电子传导率、离子传导率的测定对提高电池性能、明确电池劣化主要原因非常有效。但是,实际多孔电极中的测定方法还未确立,该电池技术研究部门一直在研究开发各种类型、条件下的测定方法。另外,该部门还根据电池、燃料电池等电化学器件开发企业的要求,进行一些共同研究活动。 目前该部分的主要研究成果如下:利用电化学阻抗进行离子传导率·电子传导率测定;同时测定多孔电极离子传导率·电子传导率的“6端子法”;正确解释电化学阻抗的基础理论和手法。 8.电池内部反应不均现象可视化 该项研究由日本产业技术综合研究所、京都大学、立命馆大学、株式会社KRI共同进行,并于2016年5月23日公布了研究成果。 在该研究中,研究团队为了实现反应不均现象的可视化,使用了可获得二维数据的X射线吸收光谱测定方法。另外,研究团队还确立了在锂离子电池的电极中测量电子传导率、离子传导率的方法。通过在不同性能的锂离子电池电极中使用上述方法进行解析,研究团队最终确定电池内部的反应不均现象是由离子传导所引起的,这一现象会极大地影响电池性能。 该研究成果有助于进行锂离子电池的实用性设计,可以帮助提高电池性能。尤其是在反应不均现象较为明显的大型电池中,该研究成果将适用于汽车用锂离子电池的设计,并有望延长电池的续航距离、提高电池的安全性。 9.在电荷载子中使用分子性离子的新型二次电池 在目前的Li二次电池中,Li+作为电荷载子起作用,因此电池的电压、安全性等都收到Li本质的物性上限制。为此,该研究小组在不使用Li+或Na+的电池中进行了将分析性离子作为电荷载子进行作用的电池实证。 该电池未来备受期待的优点如下: ①比Li更低的电位⇒高电压 ②高离子传导率⇒高输入、高输出 ③没有枝晶(dendrite)⇒高安全性 ④不使用稀有金属⇒低成本
  • 《日本产业技术综合研究所(AIST)开发纳米材料的多模测量方法》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-07-01
    • 近日,日本产业技术综合研究所(以下简称“产总研”)物质测量标准研究部门纳米材料结构分析研究小组白泽彻郎高级主任研究员、国立大学法人东京学艺大学教育学部Voegeli Wolfgang准教授及荒川悦雄教授,利用由放射光X射线产生的虹色X射线(波长分散聚焦X射线),开发了同时高速测量X射线散射和X射线吸收光谱的技术。 通过该技术的开发,成功地同时获得了左右纳米材料功能的纳米级结构(粒子的尺寸和形状),以及原子级结构(原子间距离、配位数、化学状态)的信息。 利用这项技术,可以观察到从原子尺度到纳米尺度的多个信息之间的相关性,这在以往的个别测量中是困难的,通过将其结果与功能信息进行对照,可以详细了解结构和功能的因果关系。将这些信息运用到多模态分析中,对纳米材料的功能进行最大化的结构和新功能的预测,可以期待对材料开发的革新做出贡献。 另外,该技术的详细内容于2024年6月25日在线刊登在英国《Physical Chemistry Chemical Physics》期刊上(DOI:https://doi.org/10.1039/D4CP01399A)。