《苏州纳米所李清文、张其冲等在高稳定性盐壳金属卤化物钙钛矿用于光致发光和可穿戴传感器研究方面取得进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-02-07
  • 人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了极大的关注。遗憾的是,这类交互设备大多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了一种简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新的途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新的机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是一个巨大的挑战。

      中国科学院苏州纳米所轻量化实验室李清文研究员与张其冲项目研究员等提出了一种高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。通过该策略,仅使用水作为溶剂就制备了盐壳金属卤化物固体,其具有高效和狭窄的绿色排放,PLQY为87.3%。其中KBr盐不仅提供了一个富溴的环境来钝化钙钛矿的表面缺陷,而且还作为基质来提高其稳定性。该绿色环保的制备策略还可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究者进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。

    通过简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙的引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,还提升了产物光和热稳定性。

      得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并且可以通过喷墨打印技术打印相关的图案。

      作为概念验证,研究者还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。

      该研究工作为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关工作以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题发表于Nano Energy上,本文的共同第一作者是中国科学院苏州纳米所和华东理工大学联合培养博士生陈龙、上海交通大学博士生贺梦,通讯作者是华东理工大学的袁双龙副教授,新加坡南洋理工大学魏磊副教授,中国科学院苏州纳米所的张其冲项目研究员和李清文研究员。该工作获得了中国科学院“率先行动”引才计划和江苏省青年基金项目的资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202302/t20230207_6672414.html;http://www.sinano.cas.cn/news/kyjz/202302/t20230207_6672414.html
相关报告
  • 《苏州纳米所印刷电子团队在高稳定性织物柔性发光显示方向取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-02
    •   柔性织物可穿戴电子电路系统是未来人体健康监测的重要基础平台,在疏松多毛、多孔洞、高弹性、易形变服装织物上,不以牺牲元器件的光电性能及面料的质轻、柔软、透气等特性为代价,集成高柔韧度、高机械可靠性的导线及光电学元器件仍是当前面临的行业共性技术难题。   在织物面料表面构建电子器件与电路面临如下诸多挑战:第一,如何克服多孔粗糙表面,实现高导电、高精度、耐拉伸电极电路的制备?第二,如何在保证电学功能的前提下最大限度保留织物轻柔透气特性?第三,如何实现电路电子元器件具有与织物共形变的柔韧可拉伸特性,从而实现可水洗、耐揉搓等高耐久性?   针对上述挑战,中国科学院苏州纳米所印刷电子团队近年来在织物基柔性可穿戴电子器件方面取得了一系列进展,发展了基于银纳米线(AgNWs)和金属网格(Metal Mesh)的透明导电薄膜,成功应用于织物基可拉伸光电器件(ACS Appl. Mater. Interfaces 2020, 12, 24074-24085; Adv. Electron. Mater. 2021, 2100611; Flex. Print. Electron. 2022, 7, 034002),并在印刷织物电路及器件方面做了大量工作(J. Mater. Chem. C, 2020, 8, 16798-16807; ACS Appl. Electron. Mater. 2021, 3, 1747-1757; Nano Res. 2022, 15,4590-4598),另外在织物基智能系统方面也进行了系列研究(ACS Appl. Mater. Interfaces 2022, 14, 29144-29155; Nano Res. 2022, DOI: 10.1007/s12274-022-5077-9.)   近日,针对印刷墨水中有机溶剂对织物造成破坏和残留问题,中国科学院苏州纳米所印刷电子团队袁伟副研究员等借鉴传统烫印技术,利用激光刻蚀结合热转印开发了一种全固态、可图案化、普适性的织物基交流电致发光器件(ACEL)制备方法。制备的织物发光器件具有优异的机械和耐洗涤性能,器件界面剥离强度高达700N/m,按照标准洗涤流程机洗5次后器件发光均匀性不受影响,亮度仅降低9.7%,在针刺和裁切等物理损伤下仍然保持正常的发光功能。此外,研究者还展示了蓝、绿、黄等多种彩色图案,并且演示了利用家用工具在织物上DIY发光logo的制备流程。最后,将制备的发光器件集成到服装上,实现了动态像素化数字演示。这种普适的织物发光器件加工技术的开发将进一步促进未来可穿戴显示器件的应用。  在织物上制备ACEL器件的工艺流程如图1(a)所示。从底电极、发光层到透明顶电极,都预先结合激光雕刻技术制备好,具体步骤如下:第一步,在离型膜表面分别刮涂复合导电层和热熔胶层,利用激光雕刻技术进行图案化处理,热转印到织物表面,标记为1号和2号电极,其中1号电极与底电极相连,2号电极与随后的透明顶电极相连;第二步,在离型膜表面刮涂发光层,利用激光雕刻技术进行图案化处理,随后热压在底电极上;第三步,同样利用激光雕刻技术对透明顶电极进行图案化处理,随后热压在发光层上,透明顶电极覆盖整个发光层并与2号电极相连。该器件的工作原理是形成一个电容器结构,上下两层为电极,中间为发光层,顶部的透明电极可允许光输出。如图1(d)所示制备的器件在模拟水洗状态下,依旧具有出色的机械性能。   本研究工作的重要亮点之一是引入了蛇形可拉伸金属网格透明电极,该电极在550 nm处其透过率为77.16%,同时方阻低至134.4 mΩ/sq,仅为ITO电极方阻的0.5%。此外,该电极在拉伸100%时电阻变化仅为~10%,在经过长达8000次的弯折循环测试和50次的粘附力测试后,电极的阻抗几乎不变。数据表明制备的透明金属网格电极具有优异的机械稳定性,是织物发光显示器件实现高稳定性的关键。   研究还对制备的弹性可拉伸TPU成分与发光及介质材料配比进行了系统评估,结合发光层的力学性能和发光器件的静态数据,得出最优的发光层为TPU:ZnS/Cu:BaTiO3三者的质量比为8:20:4,基于此比例,还系统研究了驱动电压和频率对器件发光亮度和颜色的关系。   研究者对器件的发光性能进行了系统全面的表征,包括机械耐久性、高温高湿环境下的稳定性、耐水洗性以及物理损坏,如图4所示,器件在各种拉伸条件下仍保持着稳定的性能;研究还展示了该织物蓝、绿、黄多色发光LOGO器件及其自由可裁剪及抗针刺能力,并实现了织物面料上芯片驱动的智能动态化数字动态显示。该研究成果证明了在织物面料表面构建高机械稳定性和环境适应能力的发光显示器件与电路结构的可行性,为未来柔性织物可穿戴电子系统的发光显示部件提供了一种新的解决方案。   相关工作以Thermally Laminated Lighting Textile for Wearable Displays with High Durability为题发表在ACS Applied Materials & Interfaces上。中国科学院苏州纳米所硕士研究生林勇(已毕业,现为南京大学在读博士生)和博士后陈小连为文章共同第一作者,通讯作者为袁伟副研究员和苏文明研究员;本工作还得到了南京大学现代工程与应用科学学院孔德圣教授团队的大力帮助。
  • 《山东大学团队在制备高质量金属卤化物钙钛矿纳米晶取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 山东大学前沿交叉科学青岛研究院分子科学与工程研究院韩克利教授团队在制备高质量金属卤化物钙钛矿纳米晶方面取得重要进展,利用锗卤化物作为理想的前驱体设计了一种更有效、毒性更小的制备高光电性能金属卤化物钙钛矿纳米晶体的途径,使所制备的纳米晶的光电质量得到了明显改善。相关研究成果以“Germanium Halides Serving as Ideal Precursors: Designing A More Effective and Less Toxic Route to High Optoelectronic Quality metal Halide Perovskite Nanocrystals”为题发表在国际学术期刊Nano Letters上。山东大学是该论文的第一完成单位,前沿交叉科学青岛研究院2019级硕士研究生王晓晨和2020级博士研究生柏天新为该论文共同第一作者,韩克利教授和刘锋研究员为该论文的共同通讯作者。 金属卤化物钙钛矿纳米晶由于显着的尺寸特性和结构稳定性受到了广泛关注。然而,铅基和非铅钙钛矿纳米晶的三前驱体合成面临着非常相似的挑战:目前选择的卤化物前驱体主要局限于有毒并且高度易燃的有机卤化物,这将大大限制它们的大规模应用。另外,这些有机卤化物制备的大多数纳米晶由于卤素缺陷导致其光致发光性能较差。而很多无机金属卤化物又会同时将金属阳离子引入钙钛矿晶格,从而不可避免地改变目标材料的晶体结构。因此,寻找合适的卤化物前驱体变得越来越重要。 在本工作中,该团队创新性地提出了将全无机锗盐GeX4(X = Cl、Br、I)作为稳定且低危险性的卤化物前驱体。不同于大多数其他无机卤化物前驱体,GeX4化合物不会将Ge元素传递到最终化合物中,而所得纳米晶的发光强度、荧光寿命、光致发光量子产率和相稳定性都得到了明显改善。这可归功于Ge卤化物中卤素离子释放过程的良好调控,这有助于增加所得钙钛矿纳米晶的卤化物组成,从而减少或消除与卤化物空位相关的陷阱态。并且理论计算表明,锗卤化物在介电环境和热力学中都提供了有利的条件,这有助于形成尺寸受限的缺陷抑制的纳米粒子。该研究为制备高质量的钙钛矿纳米材料并调整其光电特性提供了一条光明道路。