《周小龙/王恩多团队揭示线粒体翻译保真性失调导致细胞周期阻滞与心脏病》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-11
  •     2023年9月5日,中国科学院分子细胞科学卓越创新中心 (生物化学与细胞生物学研究所) 周小龙课题组与王恩多课题组合作,在PNAS在线发表了题为Mammalian mitochondrial translation infidelity leads to oxidative stress-induced cell cycle arrest and cardiomyopathy的研究论文,揭示哺乳动物线粒体mRNA翻译需要严格的质量控制机制。

        该研究通过构建第一个编校缺陷性细胞模型与动物模型,揭示哺乳动物线粒体mRNA翻译虽然“简单”,却需要严格的质量控制机制;在细胞水平上,保真性失衡会导致线粒体错误翻译,进而引起能量供应不足、氧化应激与细胞周期阻滞等;在动物水平上,保真性失衡会导致扩张性心肌病、心脏纤维化等。本研究为线粒体基因表达调控机制提供了新视角。




    编译来源:https://mp.weixin.qq.com/s/PVsq3QDMUni0H4yeSNjjZA

  • 原文来源:https://www.pnas.org/doi/10.1073/pnas.2309714120
相关报告
  • 《分子细胞卓越中心等揭示线粒体tRNA选择性降解导致HUPRA综合征的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   11月9日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员周小龙团队与上海儿童医学中心研究员王剑团队合作以Selective degradation of tRNASer(AGY) is the primary driver for mitochondrial seryl-tRNA synthetase-related disease为题在Nucleic Acids Research上在线发表最新研究成果。   哺乳动物细胞具有两套蛋白质合成系统,即细胞质与线粒体蛋白质合成系统。人线粒体基因组含有37个基因,包括2个rRNA (12S与16S)、22个tRNA以及13个蛋白质编码基因。线粒体翻译机器的所有核酸组分(mRNA、rRNA、tRNA)由线粒体基因组编码,所有的蛋白质组分由核基因编码,在细胞质中合成后,由线粒体定位信号肽转运至线粒体中发挥功能。线粒体蛋白质合成只生产13种线粒体基因组编码的蛋白质,它们都是线粒体氧化磷酸化复合物I、III、IV、V中的核心亚基,且全部是跨膜蛋白,对于氧化磷酸化复合物组装和发挥功能具有至关重要的作用。线粒体蛋白质合成的速率与保真性直接控制线粒体遗传信息传递的精确性、氧化呼吸链复合物的正确组装与发挥功能,进而控制线粒体代谢与重大细胞生命活动。   线粒体氨基酰-tRNA合成酶(mt-aaRS)是关键的蛋白质合成因子,通过催化线粒体tRNA的氨基酰化反应,为线粒体内的蛋白质合成提供原料。mt-aaRS基因突变可导致常染色体隐性遗传病,其临床表型以中枢神经系统受累最为显著,亦可累及肌肉、心脏等其他组织器官。此类疾病往往临床诊断困难,发病机制不明,治疗手段极为有限,亟待深入研究。   线粒体丝氨酰-tRNA合成酶(SARS2)催化线粒体两种tRNASer【hmtRNASer(AGY)和hmtRNASer(UCN)】的氨基酰化反应,需要特别指出的是,其中hmtRNASer(AGY)由于缺乏D-茎/环结构,是人细胞中唯一没有倒L型三级结构的tRNA。目前该基因突变的病例十分罕见,已报道患者的表型主要分为两类,一类是致死性的HUPRA综合征,以高尿酸血症、肺动脉高压、肾衰竭和碱中毒为特征性表现;另一类主要表现为进行性痉挛性四肢轻瘫。   该研究报道了一例SARS2基因突变患者,该患者主要表现为肺动脉高压、大运动发育落后、癫痫反复发作、脑萎缩等,患者表型与已知SARS2基因突变导致的疾病既有重叠又有差异。全外显子组测序分析显示患者SARS2基因存在复合杂合突变,包括非经典剪接位点突变(c.654-14T>A)和移码突变(c.1519dupC),均为新发现的突变。c.654-14T>A导致内含子区12个碱基的滞留,进而导致在SARS2活性中心插入了4个氨基酸(该突变体命名为Ins12),而c.1519dupC 突变导致SARS2 C末端的缺失与异常延伸,置换了关键的C末端tRNA结合结构域(该突变体命名为dupC)。   该研究(1)通过生物化学方法详细研究了SARS2突变体对于SARS2氨基酸活化、氨基酰化及tRNA结合能力的影响,研究发现Ins12不能催化两种线粒体tRNASer的氨基酰化,但尚可激活Ser并且结合tRNA,表明活性中心4个氨基酸的插入无法将tRNA的CCA末端正确引导到催化活性位点。而dupC对两种线粒体tRNASer的氨基酰化活力均显著受损;同时,dupC对两种线粒体tRNASer的亲和力显著受损,表明SARS2蛋白的C末端对于tRNASer的结合至关重要。(2)通过结构生物学解析与比较了野生型SARS2与Ins12的结构特征,并结合Alpha fold结构模拟,揭示Ins12突变体活性中心的4个氨基酸插入破坏了SARS2的二聚化能力。(3)通过建立多个诱导性多能干细胞模型,揭示患者来源细胞中的hmtRNASer(AGY) 稳态水平显著降低, hmtRNASer(UCN)未受影响,提示hmtRNASer(AGY) 的氨基酰化缺陷导致hmtRNASer(AGY) 更容易降解;此外,SARS2也可能作为tRNA的“分子伴侣”,通过与缺少D茎/环的hmtRNASer(AGY)结合后起到稳定结构的作用。氨基酰化hmtRNASer(AGY)含量的不足进一步造成患者细胞线粒体翻译系统显著下调,并且导致线粒体呼吸链氧化磷酸化产能缺陷、糖酵解过程异常、细胞内活性氧异常增多、细胞凋亡水平升高、线粒体自噬活跃及线粒体动态平衡失调,引起线粒体的稳态失衡和功能障碍。(4)通过构建Ins12与dupC小鼠模型发现,两种突变的纯合子及复合杂合小鼠均存在早期胚胎致死现象,而Sars2 Ins12与dupC杂合突变小鼠的骨骼肌组织存在两种tRNASer含量的显著下调、线粒体翻译受损以及线粒体形态异常。   该研究鉴定了新的导致线粒体HUPRA综合征的SARS2点突变,扩展了SARS2缺陷相关的临床表型;利用分子、结构、细胞和遗传学方法与技术手段,系统解析了SARS2点突变对于SARS2结构与功能、线粒体翻译及功能的综合性影响,揭示hmtRNASer(AGY)选择性降解导致其稳态水平显著降低是SARS2基因突变导致线粒体疾病的致病机制,显著加深了人们对mt-aaRS功能缺陷相关线粒体疾病分子机理的认识。该研究为此类疾病的临床诊断、疾病干预与治疗策略开发提供了理论基础。   相关研究工作得到科学技术部、国家自然科学基金委、中国科学院与上海市的资助。
  • 《科学家揭示线粒体翻译损伤通过激活线粒体UPR延长线虫寿命》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-05-18
    • 近日,《氧化还原生物学》(Redox Biology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrial translational defect extends lifespan in C. elegans by activating UPRmt。 该工作鉴定了首例由一个编码基因,通过mRNA翻译重起始产生细胞质与线粒体两种苏氨酰-tRNA合成酶(ThrRS),揭示线粒体翻译缺陷通过激活线粒体未折叠蛋白反应(UPRmt)延长线虫寿命,同时揭示氨基酰-tRNA合成酶(aaRS)缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性与物种间的保守性。  真核生物有至少两套蛋白质合成系统,需用至少两套aaRS。通常情况下,两套核基因编码细胞质与线粒体aaRS。由一种基因编码两种aaRS的情况相对较少,且具体机制尚待深入研究。线粒体作为半自主性细胞器,有其自身的基因组(mtDNA),负责编码少量对于线粒体氧化磷酸化复合物关键的蛋白质亚基,在线粒体发生、结构与功能调控方面具有重要作用。由于线粒体在细胞能量供应、代谢调控及命运决定中的核心作用,人类线粒体蛋白质合成紊乱常导致包括神经退行性疾病、心脏病、肌无力、癫痫、耳聋、生殖缺陷等多组织器官受累的疾病表型,统称为线粒体脑肌病。但是线粒体蛋白质合成对于其他真核模式生物的生物学功能了解较少。   该研究中,研究人员分析了线虫(C. elegans)ThrRS的基因与蛋白质形式,发现线虫只有一个潜在的ThrRS基因tars-1,但却注释两种不同长度的ThrRS;通过RT-PCR以及5’-RACE方法证明,在线虫体内,只有一种tars-1 mRNA,可能利用翻译重起始产生两种形式的ThrRS;利用在哺乳动物细胞中的荧光定位实验,明确长形式ThrRS(CeThrRS-1)与短形式ThrRS(CeThrRS-2)分别定位于线粒体与细胞质中。通过构建两种酵母遗传学突变株,研究证明体内tars-1通过翻译重起始产生CeThrRS-1 以及CeThrRS-2,它们分别在线粒体与细胞质蛋白质合成中发挥作用;以CeThrRS-2为研究对象,系统研究了其介导的细胞质与线粒体tRNA氨基酰化反应的机制,并阐明了其催化的蛋白质合成质量控制机制。为了研究线粒体tars-1的生理功能,研究人员通过CRISPR–Cas9构建线粒体tars-1敲低的线虫品系,发现线粒体tars-1 敲低线虫出现发育迟缓、运动能力下降、产卵下降、寿命延长的表型,进一步研究发现线粒体功能受损:耗氧率降低、复合物Ⅰ活性下降、线粒体出现还原应激,UPRmt被激活,而线虫寿命的延长依赖于UPRmt的激活。研究人员敲低线虫及哺乳动物细胞中多种线粒体aaRS,发现都能激活UPRmt,说明线粒体aaRS缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性及物种间的保守性。   该研究从基因、转录本、蛋白质形式、生化机制、细胞定位、细胞器功能与动物整体水平,首次系统阐释了由一种ThrRS基因编码两种细胞定位的ThrRS的分子机制,建立并阐明了线虫ThrRS介导的蛋白质合成速度与质量控制机制,揭示了线粒体翻译损伤通过激活线粒体UPR延长线虫寿命。相关研究为更加深入认识线粒体蛋白质合成在真核生物衰老与寿命中的关键作用提供了新的基础。   相关研究工作得到科学技术部部、中国科学院、国家自然科学基金委、上海市科学技术委员会的资助。