《【Journal of Materials Chemistry A 】高镍电池突破:单晶结构解决残留锂难题》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2025-05-28
  • ?研究机构与人员?

    韩国能源研究所(Korea Institute of Energy Research)的Ulsan先进能源技术研发中心团队,由Wooyoung Jin和Hyungyeon Cha博士领导。

    ?研究内容与突破??问题背景?:

    高镍(Ni含量达80%)正极材料虽能提升电动车电池能量密度,但残留锂(Li)化合物会导致电极浆料凝胶化,降低电极性能20%。?传统误区?:过去认为残留锂仅存在于颗粒表面,通过水洗或涂层处理效果有限。?

    新发现?:团队首次证实残留锂存在于颗粒内部孔隙(通过高分辨电镜、氮吸附分析等技术验证),提出单晶结构高镍正极材料可减少晶界空隙,抑制残留锂结晶。?

    效果?:单晶材料使残留锂含量降低54%,接近工业目标(<2000 ppm)。?

    意义?:该研究为高镍正极的稳定性设计提供了新方向,推动下一代电动车电池发展。

    原文链接::Wooyoung Jin et al, Identifying the nanostructure of residual Li in high-Ni cathodes for lithium-ion batteries, Journal of Materials Chemistry A (2024). DOI: 10.1039/D4TA07384C

  • 原文来源:https://techxplore.com/news/2025-05-generation-ev-batteries-scientists-high.html
相关报告
  • 《“印刷术”突破柔性钙钛矿太阳能电池难题》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-05
    • 2017年12月29日,在中国科学院化学所绿色印刷重点实验室里,研究人员向《中国科学报》记者展示了他们最新制备的钙钛矿柔性太阳能电池,厚度和柔韧程度与一张杂志纸差不多。三年来,他们利用“印刷术”突破了柔性钙钛矿太阳能电池难题,有望为柔性可穿戴电子设备提供可靠电源。日前,这一成果在国际学术期刊《先进材料》(Adv. Mater.)上刊发。 这项研究通过纳米组装-印刷方式制备了钙钛矿的蜂巢状纳米支架,并在其内部搭建起“光学谐振腔”,这两项创新同时提高了柔性钙钛矿太阳能电池力学稳定性和光电转化率。 钙钛矿材料的新应用 “如果智能手表能配太阳能发电的表带,就不用天天充电了。”谈到开展该研究的初衷,论文第一作者、中国科学院化学所博士生胡笑添表示。钙钛矿发电效率的指数级增长和喷墨打印钙钛矿单晶材料的技术积累让他看到这一想法实现的可能。 钙钛矿光电转化效率高、价格低,是一种良好的太阳能电池材料。当不少实验室都在如何让钙钛矿代替硅电池上下功夫时,宋延林课题组看到了另一个应用方向——柔性太阳能发电材料。 科研人员对钙钛矿“又爱又恨”,其本身薄,基材厚度在一毫米以内,极具在人体上穿戴的可能;但材质脆,不耐弯折。为增加弯折性,胡笑添曾尝试用软性材料将钙钛矿上下包裹起来等多种方式,效果都不尽如人意。最终,他受到自然界最稳定力学结构蜂巢的启发,通过纳米组装-印刷方式制备出“蜂巢状纳米支架”可作为力学缓冲层,实现了柔性钙钛矿太阳能电池更高的力学稳定性。 同时,钙钛矿电池的光电转化率也是亟待解决的问题之一。由于技术限制,钙钛矿薄膜的面积越大,光电转换率越低。胡笑添则在器件内部搭起光学谐振腔,实现了50平方厘米面积上12.32%的光电转化率,在高效率电池在大面积可重复性上取得重大突破。 印刷制备提供技术积累 事实上,宋延林课题组能克服钙钛矿的性质作出突破离不开他们在绿色印刷上的技术积累。区别于传统图文材料的印刷内容,宋延林课题组提出了“大印刷”概念,可以把各种有功能的材料通过印刷的方式印到基材上。如今,科研人员的“印刷技能”已精确到纳米级别,能打印出“最细的线”和“最小的点”。去年,实验室还成功做出了可穿戴传感器,可识别复杂表情,并有望应用于脉搏监测、心脏监护和远程操控等领域。 “钙钛矿电池制备便是通过喷墨打印的方式将钙钛矿单晶材料打印到基材上。”宋延林说。 不仅如此,用于提高弯折性的蜂巢状纳米支架也通过印刷制备:“我们用墨水印刷的方式把蜂巢大小的球组装成单层紧密排列的形式,之后将蜂巢材料填充球与球的间隙中间,再将球冲刷掉,就形成了蜂巢状的网。” 大面积柔性材料未来可期 三年,2000多个器件,是宋延林带领课题组在这项研究中的尝试。“季节性的湿度变化对实验成功率影响都很大,跟撞运气一样,每个步骤都很细心很认真,但最后器件做出来性能就是不好。”宋延林回忆。在项目研究的三年中,胡笑添和课题组成员每天都要做至少三个样品出来测试数值。 胡笑添用镊子夹起一块指甲盖大小的玻璃板,一块深棕色的钙钛矿太阳能电池镶嵌其中。 “这是目前大部分实验室的研究方向,在极小的面积上实现较大的光电转换率,这块材料转换率达到20%左右,但面积太小,发电量也只有几毫瓦,应用价值还不够。”宋延林表示,科学研究要面向应用,钙钛矿太阳能电池不能一味追求高转化率而忽视可用性。目前,实验室的研究重点还放在大面积和柔性上,更大面积、更易弯折的钙钛矿电池研究成果有望明年发布。 尽管距离钙钛矿太阳能电池走出实验室还有许多难题,研究人员依然看好其未来应用。除了可穿戴设备,未来,钙钛矿电池还可能应用在衣服、汽车玻璃贴膜等地方,吸收太阳光,转化的电量给其他设备充电,既环保又实用。
  • 《阴极化学的突破为更可持续的锂硫电池铺平道路》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-02-15
    • 美国对电动汽车(EVs)不断增长的需求揭示了可持续采购电池技术的重大挑战,这种技术是向可再生电力和远离化石燃料的广泛转变所必需的。为了使电池不仅比目前用于电动车的电池性能更好,而且还能用现成的材料制成,德雷塞尔大学的一组化学工程师已经找到了将硫磺引入锂离子电池的方法--结果令人震惊。 随着2021年全球电动车销量翻番,锂、镍、锰和钴等电池材料的价格飙升,这些原材料的供应链(大部分来自其他国家)也因大流行而陷入瓶颈。这也将注意力集中在原材料的主要提供者:刚果等国家;并提出了从地球上提取这些原材料对人类和环境影响的问题。 早在电动车激增和电池材料短缺之前,开发商业上可行的硫磺电池一直是电池行业的可持续、高性能的目标。这是因为硫磺的天然丰度和化学结构将使其能够储存更多的能量。德雷塞尔大学工程学院的研究人员最近在《通信化学》杂志上发表的一项突破,提供了一种避开过去压制锂硫电池的障碍的方法,最终将这项备受追捧的技术拉到了商业化的范围内。 他们的发现是一种生产和稳定罕见形式的硫的新方法,这种硫在碳酸盐电解质中发挥作用--商业锂离子电池中使用的能量传输液体。这一发展不仅会使硫磺电池在商业上可行,而且它们的容量将是锂离子电池的三倍,并可持续充电4000次以上--相当于使用10年,这也是一个实质性的改进。 领导这项研究的德雷塞尔大学化学和生物工程系乔治-B-弗朗西斯讲座教授Vibha Kalra博士说:“多年来,硫在电池中的应用一直非常理想,因为它是地球上丰富的资源,可以以安全和环保的方式收集,而且正如我们现在所证明的,它也有可能以商业上可行的方式改善电动汽车和移动设备的电池性能。” 将硫磺引入商业上友好的碳酸盐电解质的锂电池的挑战是中间硫磺产品(称为多硫化物)和碳酸盐电解质之间发生不可逆的化学反应。由于这种不良反应,以前尝试在碳酸盐电解质溶液的电池中使用硫磺阴极的结果是几乎立即关闭,并且在仅仅一个循环之后就完全失效。 锂硫(Li-S)电池已经在使用乙醚电解质--而不是碳酸盐--的实验环境中表现出卓越的性能,因为乙醚不会与多硫化物发生反应。但是这些电池在商业上是不可行的,因为乙醚电解质是高度挥发性的,其成分的沸点低至42摄氏度,这意味着任何高于室温的电池升温都可能导致故障或熔化。 Kalra说:“在过去十年中,大多数锂硫领域采用了醚类电解质以避免与碳酸盐发生不良反应。然后多年来,研究人员通过缓解所谓的多硫化物穿梭/扩散,深入研究如何提高醚基硫磺电池的性能--但该领域完全忽略了一个事实,即醚电解质本身就是一个问题。在我们的工作中,主要目标是用碳酸盐取代乙醚,但在这样做的时候,我们也消除了多硫化物,这也意味着没有穿梭,所以电池可以在数千次循环中表现得特别好。” Kalra团队以前的研究也是以这种方式处理问题的--生产一种碳纳米纤维阴极,通过遏制中间多硫化物的移动来减缓基于醚的锂硫电池中的穿梭效应。但是为了改善阴极的商业途径,该小组意识到它需要使它们与商业上可行的电解质一起发挥作用。 Kalra说:“拥有一个能与他们已经在使用的碳酸盐电解质一起工作的阴极,对商业制造商来说是阻力最小的途径。因此,我们的目标不是推动行业采用一种新的电解质,而是制造一种可以在现有的锂离子电解质系统中工作的阴极。” 因此,为了希望消除多硫化物的形成以避免不良反应,该团队试图使用蒸镀技术将硫限制在碳纳米纤维阴极基材中。虽然这个过程没有成功地将硫嵌入纳米纤维网中,但它做了一些非同寻常的事情,这在研究小组开始测试阴极时就显现出来。 “当我们开始测试时,它开始漂亮地运行--这是我们没有想到的。事实上,我们一遍又一遍地测试它--超过100次--以确保我们真的看到了我们认为看到的东西,”Kalra说。“我们怀疑硫磺阴极会导致反应停滞,但实际上它的表现惊人地好,而且它一次又一次地这样做,没有引起穿梭。” 经过进一步调查,研究小组发现,在将硫沉积在碳纳米纤维表面的过程中--将其从气体变为固体--它以一种意想不到的方式结晶,形成了该元素的一种轻微变化,称为单斜伽马相硫。硫的这种化学相,与碳酸盐电解质不发生反应,以前只在实验室的高温下产生,只在自然界的油井的极端环境中观察到过。 化学和生物工程系的博士生、该研究的共同作者Rahul Pai说:“起初,很难相信这就是我们探测到的东西,因为在以前的所有研究中,单斜伽马相硫在95摄氏度以下是不稳定的。在上个世纪,只有少数几项研究产生了单斜伽马相硫,而且它最多只稳定了20-30分钟。但是我们在一个阴极中创造了它,该阴极经历了数千个充放电循环而性能没有减弱--一年后,我们对它的检查表明,化学相一直保持不变。” 经过一年多的测试,硫磺阴极仍然稳定,正如该团队报告的那样,在4000次充放电循环中,其性能没有下降,这相当于10年的常规使用。而且,正如预测的那样,该电池的容量是锂离子电池的三倍以上。 Kalra说:“虽然我们仍在努力了解在室温下创造这种稳定的单晶硫的确切机制,但这仍然是一个令人兴奋的发现,它可以为开发更可持续和负担得起的电池技术打开许多大门。” 用硫磺替代锂离子电池中的阴极,将减轻对采购钴、镍和锰的需求。这些原材料的供应是有限的,而且不容易提取,不会造成健康和环境危害。另一方面,世界上到处都有硫磺,而且在美国有大量的硫磺,因为它是石油生产的废物。 Kalra建议,拥有一个稳定的硫磺阴极,在碳酸盐电解质中发挥作用,也将使研究人员能够在研究锂阳极的替代品方面取得进展--这可能包括更多的地球资源选择,如钠。 Kalra说:“摆脱对锂和其他昂贵且难以从地球上提取的材料的依赖,对于电池的发展和扩大我们使用可再生能源的能力来说是至关重要的一步。开发一种可行的锂硫电池为取代这些材料开辟了许多途径。”