来自材料牛
英国牛津大学Peter G. Bruce、T. James Marrow、 Charles W. Monroe教授课题组基于对全固态电池枝晶过程的多尺度多手段表征与原位追踪,提出了新的全固态电池枝晶理论,将全固态电池的枝晶短路过程分为引发和扩张两个不同的阶段,并分别建立了理论模型。其中枝晶的引发产生于锂在与Li/SE界面连通的近界面孔洞(缺陷)的沉积,在孔洞填满后将锂挤出的过程中,过大电流密度使得锂作为粘塑流体的流动过程产生极大的内部应力,从而引发电解质碎裂。而锂枝晶的扩张过程是一个锂枝晶在沉积的动态过程中从枝晶裂纹的尾部将固态电解质楔开(wedge open)的过程。枝晶的引发取决于固态电解质晶界的局部断裂强度、孔洞的尺寸、分布密度、及电流密度;而枝晶的扩张过程取决于固态电解质的宏观断裂韧性,枝晶在裂纹中的分布情况,电流密度,以及充电过程的面容量。根据锂金属在枝晶引发阶段与扩张阶段力学环境的差异,引发与扩张阶段对固态电池外部压力的敏感性截然不同。只有较大的压力才会大幅影响枝晶的引发过程,但枝晶的扩张过程却对外部压力非常敏感。降低外部压力可以显著抑制枝晶的扩张阶段,即使在枝晶引发的状态下也可以大幅延后固态电池的短路。研究成果以“Dendrite initiation and propagation in lithium metal solid-state batteries”为题发表于Nature。宁子杨、李冠辰、Dominic Melvin共同一作。