《食品中化学药品风险评估及其对于食品接触材料的安全性评价的潜在影响的最新进展》

  • 来源专题:食物与营养
  • 编译者: 潘淑春
  • 发布时间:2016-05-25
  • In accordance with Regulation (EC) No 1935/2004 on materials and articles intended to come into contact with food, the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) evaluates the safety of certain substances prior to their authorisation for use in food contact materials (FCM) plastics. The current guidelines on this risk assessment process and the corresponding data requirements from applicants date back to the Scientific Committee on Food (SCF) guidelines from 2001. In the light of new developments in science and regulation, along with the experience gained since 2001 from the safety evaluation of hundreds of substances, it is appropriate to revisit the scientific underpinnings of the SCF guidelines published back in 2001 with a view to possibly updating them.

    This Opinion is an outcome of a self-tasking activity by the CEF Panel. It describes the recent developments in the risk assessment of chemicals in food and explores their potential impact on EFSA evaluation of FCM substances. The draft of this opinion was published for a 3-month public consultation and was then modified in the light of the scientific comments received. EFSA technical report on that consultation process lists the comments received and provides a response to those comments, and it has been published as an accompanying document to this final, adopted Opinion. This Opinion will provide the European Commission (EC) with the scientific basis for a discussion among risk managers on possible implications for risk management. It is intended that, in turn, the EC will provide feedback for EFSA to prepare updated guidelines for data requirements for the safety assessment of a substance to be used in FCM.

    One major area revisited is the estimation of consumer exposure. For most substances used in FCM, human exposure data were not readily available in the past. For this reason, the SCF used the assumption that a person may consume daily up to 1 kg of food in contact with 6 dm² of the relevant FCM. Now that EFSA’s Comprehensive European Food Consumption Database is available, based on the 95th percentile value for the highest European Union (EU) country and using the default water consumption figures set by the World Health Organization (WHO) for infants, four food group categories could be set. For category 1, FCM intended for contact with water and foodstuffs such as reconstituted infant milk formula, the age group with the highest consumption is ‘Infants’, with a consumption figure of 150 g/kg body weight (bw) per day. For category 2, in which contact with category 1 is excluded, but contact with milk, milk products and other non-alcoholic drinks is intended, then the age group with the highest consumption is ‘Toddlers’, with a value of 80 g/kg bw per day. For category 3, in which contact with food categories 1 and 2 are excluded but contact is with foods specifically intended for infants and toddlers, the age group with the highest consumption is ‘Toddlers’, with a value of 50 g/kg bw per day. For category 4, in which the FCM is intended for contact with foods other than those covered by categories 1, 2 and 3, the age group with the highest consumption is ‘Toddlers’, with a value of 20 g/kg bw per day. The food consumption values for these four categories are approximately 9, 5, 3 and 1.2 times higher than the current SCF default model, i.e. 17 g/kg bw per day (1 kg food consumed by an adult weighting 60 kg bw), and so using them would afford a higher level of protection, especially for infants and toddlers. Under certain conditions, special exposure scenarios might be used if consumption were lower.

    Regarding the identification and evaluation of all substances that migrate, experience gained over the years has shown that more focus is needed on the finished materials and articles, including the manufacturing process used. Substances used in the manufacture of plastic materials or articles may contain impurities originating from their manufacturing. Moreover, during manufacturing and use, reaction and degradation products can be formed, of which oligomers can be the dominant class. These substances have become known as non-intentionally added substances (NIAS) and are referred to as such in Commission regulations. Whether their presence is intentional or not, it is necessary to evaluate the safety of all migrating substances and not just of the starting substances – for example the monomers or additives alone – and the guidelines should be updated to account more fully for this more comprehensive approach. This change towards the finished FCM and its use calls for an adjustment of the present system of listing substances in order to render transparent what has been evaluated.

相关报告
  • 《基于Starlinger IV+技术的安全性评估,用于将消费后PET回收成食品接触材料》

    • 来源专题:食物与营养
    • 编译者:lixiaoman
    • 发布时间:2017-07-26
    • EFSA食品接触材料、酶、调味品和加工助剂的相关研究小组作出了基于Starlinger IV +®技术的回收过程PEGRA-V(欧盟注册号RECYC0137)的安全性评估。该方法的输入是来自收集的消费后PET薄片,其含有不超过非食品消费应用的5%的PET。利用该技术,将洗涤的PET薄片干燥并在反应器中结晶,然后挤出成粒料,在第二反应器中进一步结晶。然后将结晶粒料在第三反应器中预热,并进料至固态缩聚反应器(SSP)。小组提供的挑战性测试后得出结论,三个步骤,干燥和结晶,挤出和结晶以及SSP是确定工艺的去污效率的关键步骤。通过相关的实验和影响因素的控制条件,小组得出结论认为从该方法获得的回收PET,可以用于制造食品接触的材料和制品,可用于室温长期储存。但是由这种回收PET制成的托盘不适用于微波炉和常规烤箱及高温制品。
  • 《食品加工在食品安全中的重要性》

    • 来源专题:食物与营养
    • 编译者:mj
    • 发布时间:2018-11-16
    • 食品加工经常被认为是负面的,好像它会对我们的食品产生不利影响。今年,食品专家技术协会出版了四个食品技术处理专栏,对食品加工问题进行详细解析。 前三个名为“可持续加工解决方案”、“健康加工食品是否为食品?”和“解决食品垃圾耻辱问题”。这三个部分描述了食品加工对可持续性、健康性和减少废物的重要贡献。本月的加工专栏将重点关注食品加工在确保食品安全方面发挥的关键作用。该专栏将提供一些历史资料,然后介绍食品加工技术的实例及其对食品安全的重要性。 历史视角 食源性疾病有着悠久的历史。据说,亚历山大大帝在公元前323年因第一例已知的食源性疾病,即伤寒沙门氏菌(伤寒)感染并死亡。而后在1692年,生长在食用黑麦上的有毒真菌被怀疑是这种疾病的诱因,并由于对这种疾病的误解而产生Salem Witch试验。19世纪后期,在美西战争期间,有2万多名美国士兵因伤寒而死亡。原料乳中的链球菌爆发、罐装橄榄中的肉毒杆菌中毒和牡蛎中的伤寒沙门氏菌在20世纪初导致数百人死亡。最近几次爆发李斯特菌病和沙门氏菌病导致1985年美国近20万人患病。汉堡包和菠菜中的大肠杆菌、花生酱中的沙门氏菌、哈密瓜中的李斯特菌等在过去的18年陆续爆发,并引发了规模性疾病以及大量的伤亡情况。 加工技术有助于食品安全 以下是有助于提高加工食品安全性的不同食品加工技术实例。它们代表了通过加工制造安全食品范例。所描述的大多数食品加工方法都是先前加工专栏公布的主题。 热处理仍然是确保食品安全的主要机制,本专栏中介绍了许多食品加工技术都是以热处理为基础。虽然不是特定的食品加工技术,但可通过加热处理而提高食品安全性的方法是开发的最早的食品加工方法之一。路易斯巴斯德于1864年发明了巴氏灭菌法,利用热量来破坏牛奶和果汁中的病原体,使其可安全食用。 巴氏杀菌是一种过程,其中包装和非包装食品用温和的热量(<100℃)进行处理,以消除病原体并延长保质期。如今,巴氏杀菌在乳制品工业和其他食品加工工业中得到广泛应用,以实现食品安全。除巴氏杀菌外,其他传统工艺如烘焙和罐装也很重要。除了热食品加工技术外,还审查了一系列新颖的非热加工技术,以确定其在确保食品安全方面的作用。 红外线处理:红外线处理已被用于结合干燥和热处理来提高大米、水果、蔬菜和坚果的安全性。红外辐射以电磁波的形式释放能量,当存在于中红外区域时,可以将其用作食物的有效热处理方法。虽然红外加热因其有限的渗透深度不适用于所有食品加热过程,但它确实为特定应用的食品加工提供了显著的优势。 冷冻干燥:冷冻干燥是溶剂(通常是水)和/或悬浮介质在低温下结晶并通过升华除去的过程。该技术是一种非常温和的干燥过程,通过降低水的活性来保持各种食品的安全性。 喷雾干燥:喷雾干燥是另一种脱水过程,通过降低水的活性来保持各种可泵送食品的安全性。喷雾干燥通过将进料喷射到热干燥介质中将可泵送食品从流体状态转变为干燥的颗粒粉末。 射频处理:射频处理使用电介质加热来使用电磁波对食物进行热处理,可用于处理许多食物,包括面粉、谷物、香料等。它与干燥、烘烤、巴氏消毒等方法相结合,以提高其安全性。 微波处理:微波加热是一种商业食品加工技术,已应用于烹饪、干燥和回火食品。它与射频处理一样,利用了食物的介电特性,以及微波与它们的相互作用,用于烹饪各种食物。它已被用于意大利面食、调味料和米饭菜肴的杀菌消毒,以确保食品安全。 臭氧:它自1982年以来一直用于瓶装水的消毒,并于2001年被批准直接接触食品。臭氧是一种强效消毒剂,可有效灭活广泛的病原体。这种非热加工技术用于提高各种食品的安全性,包括农产品、肉类、家禽、海鲜和谷物。 超声波处理:超声处理使用声空化在食物中施加能量并改善其安全性,主要用于灭活微生物和酶,它还用于食品的脱水和安全解冻。 高压处理:高压处理是另一种非常重要的食品加工方法,以确保食品的安全性,同时提高质量和营养价值。该技术在非常高的压力下非热挤压水,使微生物失活。高压处理的一个关键应用是处理牡蛎,牡蛎已经参与了几次主要的食品安全爆发事件。如今,高压加工不仅用于处理牡蛎,还用于处理水果、蔬菜、果汁、果冻、果酱、肉类和鸡肉。 冷等离子体:通过高压电或微波使气体或气体混合物产生冷等离子体,这是另一种改善食品安全的非热性手段。其有效性是由于它与细胞结构发生化学反应及其对食物中细胞和DNA的紫外线介导作用。