《人工智能软件协助设计太阳能电池的新材料》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2018-09-13
  • 利用材料信息学探索聚合物太阳能电池的新聚合物。(上)由电子供体、电子受体和烷基链组成的聚合物结构的例子。(中)随机森林法分类。(下)材料信息学、实践实验与人类智能的协同结合。

    信贷:大阪大学

    在转向可再生经济的过程中,太阳能电池将发挥关键作用。有机光伏(OPVs)是一种很有前途的太阳能电池,基于一种吸光有机分子和一种半导体聚合物。

    OPVs由廉价、轻质的材料制成,安全可靠,易于生产。然而,它们的能量转换效率(PCEs)——将光转化为电能的能力——仍然太低,无法实现全面的商业化。

    PCE既依赖于有机层,也依赖于聚合物层。传统上,化学家通过反复试验来试验这些物质的不同组合,从而浪费了大量的时间和精力。

    现在,大阪大学的一个研究小组已经使用计算机来自动搜索匹配良好的太阳能材料。在未来,这可能会导致更高效的设备。这项研究发表在《物理化学快报》杂志上。

    “聚合物的选择会影响一些特性,比如直接决定PCE的短路电流,”第一作者长川信司解释道。然而,要设计出性能更好的聚合物并不是一件容易的事情。传统的化学知识是不够的。相反,我们使用人工智能来指导设计过程。

    信息学可以通过探测人类专家无法察觉的统计趋势,从而对庞大而复杂的数据集有意义。研究小组从大约500个研究中收集了1200个opv的数据。利用随机森林机器学习,他们建立了一个模型,结合了这些前OPVs的带隙、分子量和化学结构,以及它们的PCE,来预测潜在的新设备的效率。

    Random Forest揭示了在OPVs中材料性能与其实际性能之间的改进相关性。为了利用这一点,该模型被用于自动“筛选”预期聚合物的理论PCE,然后根据实践中可合成物的化学直觉,削减了顶级候选聚合物的名单。

    这一策略促使该团队开发出了一种新的、此前未经测试的聚合物。在这种情况下,基于第一次尝试的实用OPV比预期的效率低。然而,该模型对结构-属性关系提供了有用的见解。它的预测可以通过包括更多的数据来改进,比如聚合物在水中的溶解度,或者它们骨架的规律性。

    “机器学习可以极大地加速太阳能电池的发展,因为它可以瞬间预测出在实验室需要几个月的结果,”合著者Akinori Saeki说。“这并不是对人类因素的直接替代,但它可以为分子设计师选择探索哪条路径提供关键支持。”

    ——文章发布于2018年5月29日

相关报告
  • 《 合成'' Ti'' 材料与太阳能电池的光电效率提高》

    • 来源专题:可再生能源
    • 编译者:tracyludong
    • 发布时间:2014-11-05
    • M: 金属离子 ;L1、 L2: 连接器 ;黄色球: 客体分子。模块化、 多功能的结构提供了光收获 MOFs 机制的三种可能: A) 一个或多个有机链接器类型框架 B) 光吸收的客体分子在毛孔 ;C) 电荷转移相互作用客体分子和产生新的吸收到红色的孤立的客体和链接器的 MOF 连接器。
  • 《《自然·材料》:金属纳米颗粒将改变太阳能电池》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-07-30
    • 一个由加州理工学院人工光合作用联合中心和波兰科学院物理化学研究所的科学家组成的研究小组,解释了他们在收获“热电子空穴”方面的杰出成就。这一研究工作成果可用于改善太阳能电池、光化学反应和光电传感器。该最新研究发现成果论文发表在今天的《自然·材料》杂志上。 一段时间以来,已知某些金属纳米粒子可以吸收光,并在此过程中产生正负电荷。当这些电荷在光吸收中发展时,它们被称为“热”。负电荷是电子,正电荷称为“电子空穴”,其中价带中的电子(原子外壳中的电子)缺失。 热电子是一种经过充分研究的现象,众所周知,热电子可以在半导体中堆积,电子的导电性不如导体(如铜),但比绝缘体(如陶瓷)好)。这延长了它们的寿命,使其可以用于光催化剂、太阳能电池和光传感器等。关于热孔的认知还很少。 可用于太阳能电池和人工光合作用 在这项新的研究中,研究人员成功地收集了半导体中80%以上的热孔,是以前认为的三倍。这样的过程非常快:只需不到200飞秒(即0.000000000002秒)。在半导体中收集电荷的可行性意味着它们可以用于太阳能电池和人工光合作用,例如减少二氧化碳并从水中产生氢和氧。 研究人员做出了理论上的预测,即正电荷的积累也会影响负电荷的动力学。新研究中包括的观察结果证实了这一假设。当吸收光并产生电荷时,“电子温度”升高。收集热孔会使电子热容量增加,从而改变电子温度上升的幅度。 该研究表明可以通过控制电子空穴的去除程度来控制电子的能量分布。这是一个重要的结果,因为它可以调节直接等离激元太阳能电池(使用等离激元作为活性光伏材料将光转换为电能的太阳能电池)中的最大电压或控制反应堆中的光催化过程的“窗口”。 参考:Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures, Nature Materials (2020). DOI: 10.1038/s41563-020-0737-1