《镍纳米级稳定的室温蓝相液晶。》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-05-22
  • 蓝相液晶(BPLCs)被认为是下一代光学器件的潜在候选者,但它们在一个狭窄的温度范围内,这限制了它们的适用性。BPLCs的纳米颗粒(NP)稳定,通常是关于简单立方的BP (BPII)或体心立方的BP (BPI)。因此,np稳定的BPIIs和BPIs拥有广泛的温度范围,几乎没有报道。在此合成了镍纳米粒子,并将其引入BPLC。研究了镍NPs对BPLC的浓度相关温度范围的影响。微量的Ni NPs可以稳定BPLC,增加BPII和BPI的温度范围;这是由于镍NPs倾向于被困在分离线的关节处,这是弹性相互作用的结果,稳定了BPLC的整体晶格结构。当掺杂0.05 wt %倪NPs,混合物显示了一个更广泛的范围为7.7°C比范围为5.9°C的BPLC没有倪NPs。与此同时,上述相位的相位序列和范围在加热和冷却的情况下都是可再生的,这表明掺杂Ni NPs的BPLCs是热力学稳定的。

    ——文章发布于2018年5月11日

相关报告
  • 《上海光源用户在蓝相液晶研究中取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-14
    • 蓝相液晶(BPLCs)因带隙窄、光学性能优异可用于低阈值激光器。目前蓝相液晶激光器的研究主要聚焦在外界刺激下激光波长的可调节性,而对蓝相激光器工作温度的研究尚且不足。由于BPLCs窄的温度窗口,其相应激光器的工作温域大概在3-4℃。聚合物稳定蓝相(PSBP)体系的采用已经极大拓宽了蓝相液晶的温度窗口至500度,但目前所报道的蓝相激光器的最宽工作温域不超过36 ℃。“蓝相激光工作温域”与“蓝相光晶温域”间大的差异可能与所用聚合物稳定蓝相体系不合适的聚合程度(通常大部分体系可聚合LC组分<10 wt%)有关,从而导致其差的结构稳定性。而变温过程中对BPLCs带隙与荧光信号之间匹配性的理解不充分也限制了新颖宽温域BP激光器的发展。 为解决上述问题,中国科学院理化所仿生材料与界面科学中心江雷院士、王京霞研究员团队在前期工作的基础上,通过调控所制备聚合物稳定蓝相液晶的可聚合液晶单体含量(30 wt% C6M),形成了稳定的蓝相聚合物支架,将该聚合物稳定蓝相体系掺杂染料(DD-PSBPLCs)后,获得宽工作温域的蓝相液晶激光器(25-230 ℃)。为了理解宽BP激光温域的产生原因,该团队利用BL10U1线站的超小角散射(USAXS)技术对BP聚合物稳定体系进行直接表征。蓝相立方结构的确定需要不同晶面之间的空间关系信息。这一技术可以近无损地获得BP聚合/非聚合复合体系的本征有序排列信息。在测试中发现,超弱散射信号的蓝相液晶在百纳米尺度上的晶面信息国内只有在BL10U1线站才可获得,这得益于其超宽的覆盖范围(<1500 nm)。经测试发现,所用BP聚合物体系呈现出清晰的BPI体心立方结构的各晶面衍射信息,这表明其中的聚合物支架与非聚合组分完美匹配,是宽温域BP激光的产生的重要原因。该研究表明,宽的BP激光温域源于所用稳定的聚合支架体系,在整个激光温域范围内提供了稳定的反射信号和荧光信号,且在整个过程中始终保持了反射带隙与荧光信号的匹配性;而体系中的非聚合组分在温度变化过程中产生相变,使得组成的多组分性(25.0-67.5 ℃:蓝相与微量胆甾共存;67.5-72.2 ℃:蓝相体系;72.2-230. 0 ℃:蓝相与微量各向同性共存)又赋予了该BP激光器可重构的性能,实现了激光阈值随温度呈现U型变化、可逆的激光波长及在相变点(约70 ℃)明显的激光增强效应。 这项研究,扩大了BP激光器的应用范围,填补了BP激光器在高温条件下的研究空白,有力推动了柔性、可调谐、高品质、宽温域的有机薄膜激光器的发展。不仅为宽温域BP激光器的设计提供了新的思路,而且在创新性微观结构变化方面为新型多功能有机光学器件提出了重要见解。 相关研究结果以“Over 200 ℃ Broad Temperature Lasers Reconstructed from Blue Phase Polymer Scaffold”发表在《Advanced Materials》上。
  • 《卢柯团队发现超高稳定性纳米晶》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-10
    • 沈阳材料科学国家研究中心(依托中国科学院金属研究所)“相关人才计划”科学家工作室卢柯院士、李秀艳研究员,及其指导的中国科学技术大学材料学院研究生周鑫在纳米金属稳定性研究取得重要进展,相关成果5月4日在线发表于《科学》Science杂志。 据悉,金属晶粒细化至纳米尺寸可以大幅度提高其强度和硬度,但是由于引入了大量的晶界,纳米金属材料的结构稳定性变低,晶粒长大倾向明显。在一些纳米金属,如纯铜中,纳米晶粒甚至在室温条件下即发生长大。 李秀艳告诉《中国科学报》记者:“这种固有的不稳定性一方面给纳米金属材料的制备带来困难,另一方面也限制了纳米金属的实际应用。” 对于塑性变形制备的纳米晶,其显著不稳定只在一定的晶粒尺寸范围内发生,之后随着晶粒尺寸的降低,其稳定性不降反升。卢柯团队研究发现,低于70纳米晶粒稳定性升高来自于晶界能的自发降低。在塑性变形过程中,70纳米以下,晶界能自发由原来0.52焦/平方米降低至0.23~0.27焦/平方米,这一现象与在该尺寸下全位错不能弓出,晶界通过释放不全位错容纳变形有关。“不全位错的释放改变了晶界的结构,使之向低能状态转变。”李秀艳说。 研究还证实,纳米晶这一反常稳定不只在纯铜这样的中低层错能金属中发生,在高层错能纯镍中也同样存在。卢柯指出:“超高稳定性纳米晶的发现,不仅对于我们理解纳米晶的变形机制,以及晶界在纳米尺寸下的行为非常重要,同时也展示了发展高温使用的纳米晶的可能性。” .