《上海光源用户在蓝相液晶研究中取得重要进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-11-14
  • 蓝相液晶(BPLCs)因带隙窄、光学性能优异可用于低阈值激光器。目前蓝相液晶激光器的研究主要聚焦在外界刺激下激光波长的可调节性,而对蓝相激光器工作温度的研究尚且不足。由于BPLCs窄的温度窗口,其相应激光器的工作温域大概在3-4℃。聚合物稳定蓝相(PSBP)体系的采用已经极大拓宽了蓝相液晶的温度窗口至500度,但目前所报道的蓝相激光器的最宽工作温域不超过36 ℃。“蓝相激光工作温域”与“蓝相光晶温域”间大的差异可能与所用聚合物稳定蓝相体系不合适的聚合程度(通常大部分体系可聚合LC组分<10 wt%)有关,从而导致其差的结构稳定性。而变温过程中对BPLCs带隙与荧光信号之间匹配性的理解不充分也限制了新颖宽温域BP激光器的发展。

    为解决上述问题,中国科学院理化所仿生材料与界面科学中心江雷院士、王京霞研究员团队在前期工作的基础上,通过调控所制备聚合物稳定蓝相液晶的可聚合液晶单体含量(30 wt% C6M),形成了稳定的蓝相聚合物支架,将该聚合物稳定蓝相体系掺杂染料(DD-PSBPLCs)后,获得宽工作温域的蓝相液晶激光器(25-230 ℃)。为了理解宽BP激光温域的产生原因,该团队利用BL10U1线站的超小角散射(USAXS)技术对BP聚合物稳定体系进行直接表征。蓝相立方结构的确定需要不同晶面之间的空间关系信息。这一技术可以近无损地获得BP聚合/非聚合复合体系的本征有序排列信息。在测试中发现,超弱散射信号的蓝相液晶在百纳米尺度上的晶面信息国内只有在BL10U1线站才可获得,这得益于其超宽的覆盖范围(<1500 nm)。经测试发现,所用BP聚合物体系呈现出清晰的BPI体心立方结构的各晶面衍射信息,这表明其中的聚合物支架与非聚合组分完美匹配,是宽温域BP激光的产生的重要原因。该研究表明,宽的BP激光温域源于所用稳定的聚合支架体系,在整个激光温域范围内提供了稳定的反射信号和荧光信号,且在整个过程中始终保持了反射带隙与荧光信号的匹配性;而体系中的非聚合组分在温度变化过程中产生相变,使得组成的多组分性(25.0-67.5 ℃:蓝相与微量胆甾共存;67.5-72.2 ℃:蓝相体系;72.2-230. 0 ℃:蓝相与微量各向同性共存)又赋予了该BP激光器可重构的性能,实现了激光阈值随温度呈现U型变化、可逆的激光波长及在相变点(约70 ℃)明显的激光增强效应。

    这项研究,扩大了BP激光器的应用范围,填补了BP激光器在高温条件下的研究空白,有力推动了柔性、可调谐、高品质、宽温域的有机薄膜激光器的发展。不仅为宽温域BP激光器的设计提供了新的思路,而且在创新性微观结构变化方面为新型多功能有机光学器件提出了重要见解。

    相关研究结果以“Over 200 ℃ Broad Temperature Lasers Reconstructed from Blue Phase Polymer Scaffold”发表在《Advanced Materials》上。

相关报告
  • 《前沿 | 上海光源纳米三维成像线站用户取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-12-04
    • 基于全场透射显微术的上海光源纳米三维成像线站BL18B具有三维结构成像分析上的独特优势,能够为纳米材料、能源、环境等众多领域提供最先进的纳米结构表征和研究手段。该线站主要实验方法包括透射X射线显微镜(TXM)、纳米CT和谱学成像等。近日,用户先后在二维纳米复合材料、全固态锂金属电池研究领域取得重要进展。 纳米CT技术助力二维纳米复合材料连续化制备及骨再生应用研究。石墨烯、碳化钛MXene等二维纳米材料具有优异的力学、电学、光热转换和生物相容性,在航空航天、柔性电子、生物医学等领域具有重要应用前景。如何将二维纳米材料连续化组装成宏观高性能纳米复合材料,是实现这些应用亟需解决的关键科学问题。北京航空航天大学化学学院程群峰教授课题组和北京大学口腔医学院邓旭亮教授课题组在二维纳米复合材料连续化制备及骨再生应用研究领域取得了最新进展。团队联合提出了卷对卷辅助刮涂结合有序界面交联的新策略,规模化制备了有序交联的MXene(S-SBM)薄膜。该薄膜的纳米CT重构结果表明,S-SBM薄膜相比未交联MXene(S-MXene)薄膜具有更小的孔隙率,联合广角X射线散射结果,证实有序交联过程可以抑制MXene纳米片在干燥过程中的毛细收缩,从而规整密实组装MXene纳米片。此外,循环拉伸前后MXene薄膜的纳米CT重构(图h)结果首次证实了有序界面交联作用可以大幅抑制二维纳米复合材料内的裂纹扩展。这项研究解决了高性能二维纳米复合材料连续化制备的长期挑战,为其他二维纳米材料的高性能规模化组装及应用研究提供了新思路。 谱学成像技术助力基于PEO固态电解质的高能量全固态锂金属电池研究。全固态锂金属电池(ASSLBs)使用聚合物作为电解质,被广泛认为是实现高能量密度和提高安全性的最具有前景的系统。哈工大王家钧课题组在实验中通过引入具有强电子吸引能力的Mg2+和Al3+,与醚氧(EO)键有效配位,从而降低其对高价镍的溶剂化能力,减弱PEO基聚合物电解质与正极材料之间的界面相互作用。PEO-Mg-Al-LiTFSI电解质展现出优异的氧化稳定性,抗氧化能力超过5.0 V,同时在室温下实现了0.23 mS cm-1的离子电导率。实验结果表明,这种改性的固态电解质组装的全固态锂金属可稳定循环300次,表现出良好的循环稳定性和较低的界面阻抗。PEO-Mg-Al-LiTFSI组装的固态锂金属电池可稳定循环300次。PEO-Mg-Al-LiTFSI固态电解质所组装的软包电池展现出高达586 Wh/kg-1的能量密度,且在50次循环后容量保持率为80.8%。研究团队对固态电池正极颗粒的Ni元素进行了价态变化的同步辐射谱学成像方法表征。研究了不同电压范围内固态和液态电池沿各个方向发生的氧化还原反应以及电解质与富镍阴极之间的相互作用,揭示了高电压固态电池界面失效机制。通过优化Lewis酸与醚氧(EO)之间的配位,可提高聚合物固态电解质的离子电导率与电池内部的界面稳定性,探索其他类型的配位离子或功能化聚合物,也可以进一步提升聚合物固态电解质在极端条件下的电化学性能。这项研究为设计先进聚合物固态电解质开启了新的思路。 图a,b右图为根据纳米CT结果得到的S-MXene(a)和S-SBM(b)薄膜的三维重构结果。图h为循环拉伸前后MXene薄膜的纳米CT重构结果,首次证实了有序界面交联作用可以大幅抑制二维纳米复合材料内的裂纹扩展 图 a和b中的二维化学态相图展示了PEO-LiTFSI和PEO-Mg- Al-LiTFSI 中的 Ni83 粒子(放电态)在循环后吸收边能量的偏移。表明了Lewis酸配位效应提高了界面稳定性,促进了界面 Li+ 的传输和 SOC(State of Charge)的均匀性
  • 《上海光源用户在高效产氢研究中取得重要突破》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-02-05
    • 近日,北京大学马丁教授课题组与合作者报道了一种高密度、高分散的原子级Pt物种(单位点Pt1物种以及亚纳米Ptn团簇)和α-MoC组成的界面催化结构用于高效催化水和CO活化。相关成果以“A stable low-temperature H2-production catalyst by crowding Pt on α-MoC”为题发表在2021年1月21日Nature上(Nature, 2021, 589, 396–401)。美国化学会Chem. Eng.& News以“Catalyst boosts prospects for fuel-cell vehicles”为题进行了报道,认为这是一个了不起的发现。 “氢能经济”被认为是实现社会可持续发展的关键进程之一。从水中产氢,以及氢气的输运和高效纯化是“氢能经济”发展的核心。其中,水煤气变换(water-gas-shift: WGS)反应与甲烷水蒸气重整反应的组合是目前工业制高纯氢气的主要关键技术之一。除此之外,氢燃料电池作为氢能的重要应用技术面临氢燃料中少量一氧化碳(CO)对燃料电池毒化的难题。因此,发展低温、高效、稳定的水煤气变换制氢催化剂,对上述工业产氢过程和氢能的大规模应用具有重要意义。该研究团队多年来致力于立方相碳化钼(α-MoC)负载高分散贵金属催化剂的催化产氢活性,也长期得到上海光源的支持,取得了一系列优异成果。此次报道的催化剂在近室温至400?C的超宽温度区间实现高效水煤气变换制氢,突破了现有催化剂工作温度区间较高且窄的局限,并且大幅度提升了α-MoC负载的WGS催化剂的反应活性及长效稳定性。研究中XAFS、XRD实验分别在上海光源BL14W1、BL14B1线站完成:XAFS分析发现载量不高于2wt%时,Pt与α-MoC基底之间有更强烈的金属-载体相互作用,导致Pt与α-MoC之间的电荷转移使Pt带上部分正电荷,解释了该体系如何有效地防止α-MoC被深度氧化和催化剂失活;XRD表征显示,使用新的制备工艺,即使Pt负载量高达5wt%, Pt物种也均高度分散在α-MoC上,验证了Pt的高分散状态。 最终以贵金属铂的价格为$6,242进行经济衡算,所报道的Pt/α-MoC催化剂首次突破了依据美国能源部2004年车载燃料电池发展规划所推算的催化活性限值(如图1所示)。该研究工作为氢能经济的推广提供了新的技术选择,也为研究者设计高活性、高稳定性的金属催化剂提供了一种新的思路。