《高温镍基合金辐照熔盐腐蚀协同损伤机制研究取得进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2021-04-11
  • 近日,中国科学院上海应用物理研究所合金辐照研究团队在高温镍基合金辐照熔盐腐蚀协同损伤研究方面取得进展,详尽地阐述了不同类型腐蚀条件下,辐照熔盐腐蚀的协同损伤效应及相关机制。相关成果以“Synergistic effect of irradiation and molten salt corrosion: Acceleration or deceleration?”为题,发表在知名腐蚀学期刊上(Corrosion Science 185(2021)109434),论文第一作者为朱振博博士,通讯作者为黄鹤飞研究员。

    镍基高温合金作为熔盐堆的最优候选合金结构材料,其在堆内面临着高温、中子辐照和熔盐腐蚀等极端的服役环境。然而,其辐照与熔盐腐蚀的协同损伤机制存在争议。前期有研究结果表明,辐照过程中引入的缺陷(如氦泡)不仅能够为熔盐的快速扩散提供通道,而且能够增大熔盐与合金的接触面积,从而加速合金的熔盐腐蚀。然而,近期研究人员也发现辐照过程中产生的间隙原子会填充晶界处铬元素产生的空位,这种自修复机制能够抑制熔盐腐蚀。为了全面研究辐照对腐蚀的影响,作者对镍基GH3535合金和Inconel 617合金进行了低、高剂量氦离子高温辐照实验,将辐照后的样品置于700℃高温环境下进行腐蚀评估。结果发现:两种合金基体腐蚀程度随着氦离子辐照剂量增大而增加;而在Inconel 617 晶界处,低剂量辐照时呈现为抑制熔盐腐蚀状态,在高剂量辐照时则表现为促进熔盐腐蚀。通过本研究,作者揭示了上述差异产生的原因并提出了不同腐蚀类型下辐照的加速和抑制腐蚀机制:合金基体内腐蚀主要取决于氦泡的促进熔盐扩散作用,其影响程度随辐照剂量的增加而增加。合金晶界的腐蚀受到间隙原子的堵塞、氦泡促进熔盐扩散和自修复等三种作用的影响。在低剂量时晶界吸收大量的间隙原子,堵塞熔盐进入的通道,加上自修复机制的作用从而抑制熔盐腐蚀;高剂量时尽管晶界处吸收了更多的间隙原子,但是氦泡促进熔盐扩散作用起决定作用,从而促进了熔盐的腐蚀。这一研究发现为合理评估高温镍基合金的熔盐堆内服役性能提供了重要依据。

    本项研究得到了国家自然科学基金相关人才计划、面上基金以及中国科学院青年创新促进会的资助支持。

相关报告
  • 《青岛滨海学院钛合金高温防护涂层研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-08
    • 材料腐蚀类国际顶级期刊《Corrosion Science》在线发表学术论文“The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy”,阐释了钛合金高温防护涂层在高温-腐蚀耦合作用下的损伤机制及多合金元素协同作用机理,青岛滨海学院博士戴景杰为第一作者和通讯作者,此文标志着钛合金高温防护涂层研究取得新进展。 据介绍,钛合金因其具有质轻、高强及高温力学性能优异特性,是高推重比先进航空发动机压气机叶片首选材料。然而,钛合金抗高温氧化和热腐蚀性差,高温氧化环境下,必将造成钛合金压气机叶片因严重高温氧化和热腐蚀失效,降低发动机效率,造成严重事故。戴景杰博士团队在钛合金表面设计了系列高温防护涂层,并对涂层在800摄氏度下1000小时的循环高温氧化行为和800摄氏度下300小时的热腐蚀行为进行了研究,构建了涂层在高温氧化和热腐蚀行为下的损伤模型,阐明了涂层在高温-腐蚀耦合作用下的损伤机制及多合金元素的协同作用机理。 戴景杰是山东省高等学校优势学科团队——青岛滨海学院“新金属功能材料研究团队”材料表面工程研究方向学术带头人。近年来,该团队在航空钛合金领域对耐磨蚀及高温防护涂层设计制备进行了卓有成效的研究,研究成果陆续刊发于《Corrosion Science》《Journal of Materials Processing Technology》《Journal of Alloys and Compounds》《Surface & Coatings Technology》等多家腐蚀与材料类国际知名期刊,受到国内外同行关注。其研究分别得到山东省自然科学基金项目(2018MEM009)、山东省高等学校青创科技计划项目(2019KJA022)、山东省高等学校优势学科人才团队培育计划项目的支持。
  • 《青岛能源所等揭示植物DNA损伤调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   DNA是生物体遗传信息的载体,是正常生长、发育和繁衍所需的遗传模板,对于维持DNA的完整性和稳定性至关重要。紫外线、辐射和环境污染等引起的DNA损伤影响人和动物的衰老,或导致疾病乃至癌症。对植物而言,外界环境因子,如土壤盐碱、重金属、电离辐射、紫外线、洪涝等胁迫,同样会导致DNA损伤,影响植物生长发育甚至对作物生产造成危害。然而,DNA损伤响应及修复的机制在动物和植物中不完全相同,且在植物中的研究较为滞后。调控植物DNA损伤及其修复的机制的研究,对于增强作物抗性、提高生物产量具有重要的生物学意义。近日,中国科学院青岛生物能源与过程研究所研究员李胜军带领的能源植物改良与利用研究组,揭示了MAC5A和26S蛋白酶体协同调控植物DNA损伤响应(DDR)进而影响植物生长发育及适应高硼胁迫的新机制。相关研究成果发表在《植物生理》(Plant Physiology)上。   MOS4-associated complex(MAC)复合体参与植物的生长发育、胁迫响应、pre-mRNA可变剪切和miRNA生物合成等生物学过程。MAC5是MAC复合体的一个附属亚基,其功能完全丧失后导致严重的发育缺陷和胚胎致死。此前,研究团队提出,MAC5通过调控pri-miRNA的稳定性影响miRNA的积累(Li et al., PNAS 2020),但MAC5在植物体内的其他生物学功能尚不完全清楚。         研究发现,MAC5A缺失突变体mac5a对甲基磺酸甲酯(MMS,一种DNA损伤诱导剂)的处理更加敏感,表现出主根生长抑制、真叶叶原基发育延缓等表型。RNA-seq分析发现,MAC5A缺失导致DDR相关基因的表达及pre-mRNA的可变剪切发生变化。进一步,研究通过IP-MS质谱分析鉴定到多个26S蛋白酶体亚基与MAC5A互作;通过生化和遗传分析进一步验证了MAC5A与26S蛋白酶体关键亚基RPN1A和RPT2A之间的互作关系。MAC5A调控26S蛋白酶体的活性,同时26S蛋白酶体也影响MAC5A蛋白的降解。此外,土壤中高浓度的硼影响作物的产量和品质,其中主要原因之一是高硼胁迫导致植物DNA损伤。研究表明,MAC复合体的多个核心亚基和26S蛋白酶体均参与高硼诱导的DNA损伤响应过程。该研究揭示了MAC复合体和26S蛋白酶体协同调控植物DDR过程的分子机制。   研究工作得到国家自然科学基金面上项目、山东能源研究院创新基金、山东省、中国科学院、中国博士后科学基金等的支持。美国内布拉斯加大学林肯分校、河南大学、西南大学的科研人员参与研究。   植物的生长发育与环境适应能力受到RNA的转录及转录后调控,故揭示调控植物生长、抗逆的分子基础,有助于作物尤其是能源作物的遗传改良。截至目前,该团队在RNA转录后加工领域取得了系列进展,揭示了MAC复合体附属亚基MAC5(Li et al., PNAS 2020)、MAC复合体核心亚基MAC3(Li et al., Plant Cell 2018)、DEAD-box RNA螺旋酶SMA1(Li et al., Nucleic Acids Research 2018)调控植物生长发育和miRNA合成代谢的生物学机制。