《比较基因组学揭示深渊环境中鱼类嗅觉的适应性进化》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2019-12-20
  • 嗅觉感知作为化学感知的重要组成部分,在动物的生存和繁殖中起到重要的作用。鱼类通过精密调节的嗅觉系统识别并分辨水中众多的化学信息,为食物定位、危险躲避、亲缘识别及生殖洄游等行为提供至关重要的信息。海斗深渊(>6000m)具有高压、温差巨大、终年无光、食物匮乏等特殊极端条件,是常规生命形式的禁区,而狮子鱼这一类群在全球范围内的海斗深渊中均有发现,说明狮子鱼能够在如此极端的环境下成功的生存和繁衍。其中马里亚纳狮子鱼是目前发现的最深的脊椎动物,生存范围可达到8100m。但是,目前尚未有关于深渊环境下鱼类嗅觉的适应性进化研究报道。

    动物的嗅觉基因家族的进化与其生存环境下的生态需求紧密相关。例如,嗅觉功能基因的数目的改变与水生和陆生环境的不同、食性的转变、功能依赖性的改变等密切相关。马里亚纳狮子鱼可以迅速的被投放的诱饵所吸引,表明其嗅觉在觅食中具有重要的功能。其在深渊的生态环境中属于捕食者,位于食物链的顶端,但在物种丰度和数量贫乏的深渊环境中,其专一的以少数几种甲壳类生物为食。另外,由于生存在黑暗无光的环境,其视觉能力发生了褪化。因此,马里亚纳狮子鱼对嗅觉功能的依赖性既可能会由于特化的专一性食性而减弱,也可能会向补偿视觉的退化而增强方向发生适应性进化。

    为了探讨上述科学问题,中国科学院何舜平研究员团队查找并注释了9种鱼类的嗅觉受体(OR)和痕量胺受体(TAAR)基因家族,并重点对比马里亚纳狮子鱼与其浅海近缘物种细纹狮子鱼之间的差异。研究发现马里亚纳狮子鱼的OR基因家族发生了大量的丢失,并伴随着很高比例的假基因化。而TAAR基因家族基因的数目变化不大。系统发育分析结果表明,马里亚纳狮子鱼和细纹狮子鱼嗅觉基因家族的组成高度保守。同细纹狮子鱼相比,马里亚纳狮子鱼OR基因家族的亚家族数量相近,但每个亚家族中的OR基因数目明显减少,而TAAR基因家族的亚家族数目发生减少,但亚家族中的TAAR数量增加。尽管马里亚纳狮子鱼OR亚家族普遍是收缩的,仍发现有个别亚家族发生扩张,这种亚家族间独立的进化历程反映了不同OR亚家族基因在深渊生态环境中面临独立的选择压力。进一步的进化选择压力的分析显示,OR基因在马里亚纳狮子鱼中发生了松弛选择,其功能依赖性降低。而TAAR基因则受到正选择作用,这表明TAAR基因在马里亚纳狮子鱼适应深渊生态环境中仍具有重要的作用,符合其能够迅速感知动物腐败后释放的胺的现象。这项研究首次揭示了马里亚纳狮子鱼在占据深渊环境中嗅觉发生了简单但专一的适应性进化历程,为进一步了解深渊中生物的生态适应提供了重要的基础和见解。

    这一研究结果,近日发表在GENES 杂志 (https://www_mdpi.xilesou.top/2073-4425/10/11/910)。研究工作由博士生姜海峰等人完成,研究得到国家科技攻关计划和国家自然科学基金的资助。

  • 原文来源:http://www.idsse.cas.cn/yjjz2015/2019/201912/t20191218_5460382.html
相关报告
  • 《万米深渊钩虾基因组揭示其环境适应性和种群历史》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-03-14
    • 近日,中国科学院深海科学与工程研究所张海滨研究员团队联合华大生命科学研究院等单位,在深渊钩虾环境适应与种群遗传方面取得新进展,研究成果以 “The amphipod genome reveals population dynamics and adaptations to hadal environment” 为题发表于国际学术期刊《Cell》。该研究经过近十年的努力,在中国科学院部署实施的“全球深渊深潜探索计划(Global TREnD)”支持下,使用“探索一号”科考船,以及我国自主研制的全海深载人潜水器“奋斗者”号和全海深着陆器“原位实验”号、“天涯”号等装备,对马里亚纳海沟、雅浦海沟、菲律宾海盆等科考航次获得的深渊钩虾(Hirondellea gigas)样本进行研究,通过染色体水平基因组和群体遗传学分析,并综合转录组、宏基因组、代谢组等多组学数据,揭示了这种分布水深超过万米的端足类适应深渊环境的分子机制,及其群体分化与种群动态历史。 染色体水平超大基因组 研究团队利用PacBio HiFi长读长测序和Hi-C三维基因组技术,成功组装了H. gigas的染色体水平的高质量基因组(大小13.92 Gb)。基因组分析揭示了其两大主要特征:内含子延长和重复序列扩张。与近缘物种相比,H. gigas的内含子长度显著增加,主要是由于重复序列的插入,尤其是串联重复和长散在重复序列(LINEs)转座子。H. gigas基因组中71.98%为重复序列,主要为串联重复,占到基因组的46.03%,显著高于其他无脊椎动物。特别是,与其他无脊椎动物基因组相比,H. gigas基因组中长单元串联重复序列(小卫星,10-100 bp)的比例更高,其比例与无脊椎动物基因组大小正相关。这些重复的产生可能与深渊极端环境的适应有关。 地理隔离塑造了不同钩虾群体的遗传分化 研究团队对马里亚纳海沟的510只(11个群体)、雅浦海沟94只(1个群体)及西菲律宾海盆深渊区的18只(1个群体)H. gigas个体进行了高覆盖的全基因组重测序和群体遗传学分析。结果显示来自马里亚纳海沟11个不同深度(~7000-11000米)群体不存在遗传分化,表明生活在马里亚纳海沟内的钩虾是一个完全混合的群体,高静水压不会限制其在海沟内的垂直迁移。而西菲律宾海盆的钩虾群体与马里亚纳海沟的群体则表现出明显的遗传分化。这两个海沟间相隔~1500公里,表明地理隔离阻碍了群体间的基因交流。 冰期-间冰期气候变化可能影响深渊种群动态历史 研究结果显示H. gigas的有效种群在约100万年前经历了一次急剧下降,这与更新世深海温度的大幅波动高度吻合。经过遗传瓶颈后,钩虾群体又经历了种群扩张。这一结果说明,更新世时期大的冰期-间冰期气候变化可能不仅造成了陆地动物的大规模灭绝,而且也深刻影响了深海甚至深渊动物。 宿主-微生物协同合作适应深渊极端环境 研究团队通过宏基因组和代谢组学整合分析揭示了H.gigas与共生菌的协同合作可能是钩虾适应深渊极高静水压和食物匮乏环境的关键。 氧化三甲胺(TMAO)是一种渗透调节物质,在渗透压调节以及在高静水压条件下维持细胞完整性方面发挥着重要作用。检测发现,随着深度增加,钩虾肠道内容物中TMAO浓度显著升高,体组织中也呈现类似趋势。钩虾自身编码fmo3基因,可将三甲胺(TMA)转化为TMAO。而其优势共生菌Psychomonas的基因组中携带cutC和cutD基因簇,可将胆碱分解为TMA;同时拥有torYZ操纵子,可以将TMAO还原为TMA,从而调控宿主体内的TMAO浓度,形成动态平衡。 极低的生产力和有限的食物被认为是制约深海生物代谢的关键因素之一。有研究推测H. gigas可能具备消化木质碎屑的能力。本研究在H.gigas基因组中发现了4种内切葡聚糖酶基因,可以将纤维素初步分解为纤维二糖;在共生菌Psychomonas中发现了纤维二糖酶、celB基因和磷酸纤维二糖酶,负责将纤维二糖进一步转化为D-葡萄糖,从而形成完整的纤维素代谢通路。这一机制可能最终促使H.gigas能够高效利用深渊食物资源,从而使其在食物匮乏的深渊海沟中成为一大优势类群。 目前,理解动物如何适应深渊仍然是一个科学难题。本研究中获得的H. gigas的基因组是全球已发表的“最深”的动物基因组,基于群体研究产出的数据量是迄今为止全球最大规模的针对单一海洋物种的重测序,为研究深渊生态系统提供了宝贵的数据资源。本研究结果为深入理解生命如何适应深渊环境提供了新的见解。 该研究得到了中国科学院战略性先导科技专项(B类)、中国科学院国际伙伴计划、国家重点研发计划、海南省重大科技计划以及“全球深渊深潜探索计划(Global TREnD)”支持。 中国科学院深海科学与工程研究所张海滨为文章第一作者/共同通讯作者,刘君、周洋以及华大生命科学研究院孙帅、郭群飞、孟亮、陈建威、向薛雁为共同第一作者,华大生命科学研究院范广益、刘姗姗、徐讯为共同通讯作者。 论文链接:https://doi.org/ 10.1016/j.cell.2025.01.030
  • 《[南海所] 科学家揭示海马基因组特征及其环境适应进化机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:马丽丽
    • 发布时间:2016-12-21
    • 国际学术期刊《自然》(Nature)主刊于12月15日以封面长论文(Article)的形式在线发表了由中国科学院南海海洋研究所研究员林强课题组主导,德国、新加坡、华大基因等实验室共同完成的研究论文The seahorse genome and the evolution of its specialized morphology(《海马基因组及其特异体型进化机制》)。该研究在首次完成海马全基因组分析的基础上,揭示了海马在海洋近岸和岛礁栖息过程中的长期适应性进化特征。据悉该研究是国内在Nature主刊上发表的第一篇关于鱼类研究的论文。 海马隶属于脊索动物门、海龙科、海马属,是具有特殊体型的鱼类,广泛分布于世界海洋,被视为海洋生态系统中重要的环境指示物种;因其特殊药用功效而被誉为海洋“人参”,加上海马独特的雄性育儿和特异的交配行为而一直受到科学界的高度关注。林强研究团队通过全基因组数据分析得知海马是目前已获得全基因组鱼类中进化速率最快的物种(图1),发现海马与环境适应相关的基因在长期的进化过程中发生了明显收缩,如嗅觉受体基因(ORs)的数目只有26个,而其它鱼类多达60-169个;分泌型钙结合磷蛋白(SCPP)主要参与骨骼、牙釉质和牙本质等的形成,该类基因在海马中严重缺失,只保留了2个。与此同时,该研究对海马的非编码调控原件(CNEs)进行整体分析,发现海马的CNE较其它已知鱼类出现严重的缺失现象,转基因研究进一步证实了体型相关的Hox基因CNE的缺失对海马体型确实起到了调控作用。 海龙科鱼类是目前已知动物中唯一拥有“雄性育儿”行为的物种。研究人员发现海马育儿袋相关的新颖基因pastn基因发生扩增,并出现特异高表达;虽然在剑尾鱼(platyfish)的c6ast基因家族中也有类似pastn基因的结构及其相同的组合方式,但海马的pastn基因拥有“独立进化”的模式;pastn基因重复的基因选配机制在育儿袋的产生及其雄性怀孕过程中展现出新的功能特征(图2),在揭开海马雄性育儿之谜中取得了重大突破。 海马腹鳍退化机制研究也是该论文的亮点内容之一。研究人员通过对海马和其它鱼类全基因组的比较,发现海马缺失tbx4基因,基于CRISPR/Cas9 tbx4-/-验证发现敲除后斑马鱼的腹鳍完全丢失,但并没有引起其它体型相关特征的改变,从而揭示了tbx4基因的丢失确实是海马缺失腹鳍的关键原因。该研究结果将为阐明鱼类进化过程中腹鳍丢失的分子机制提供了重要线索(图3),对于加深人类认识海马生物学特性和海洋鱼类进化地位具有重要意义。 综上,林强及其合作研究团队在国际上率先完成了海马的全基因组研究,揭示了海马是一种快速进化的物种,并从基因层面探讨了育儿袋形成和怀孕过程,揭开了海马雄性育儿之谜;与此同时,该团队瞄准国际上对于海洋鱼类的进化研究高地,首次阐明了海马特异体型进化机制,为人类重新认识海洋鱼类进化地位和环境适应性开拓了新视角,对推动海洋生物学科发展具有重大意义。 该研究工作得到了国家相关人才计划项目(41322038)、中国科学院先导专项(XDA13020103)、“863”青年科学家项目(2015AA020909)等资助。 文章链接