《人工智能时代如何构建安全生态?》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-06
  • AlphaGo与人类博弈胜利,已经注定了人工智能的发展将成为未来科技发展的主流方向之一,并且正在不断渗透到我们整个社会中来,智能制造、智能零售、智慧园区、医疗健康、智慧教育、智慧城市方方面面都离不开人工智能的存在,这无疑是一片巨大的蓝海。

    然而,机遇与挑战并存,面对飞速发展的人工智能尚不能盲目乐观。在AI的世界里,安全远远不只是我们传统讲到的一些网络、系统以及软件的风险,在AI时代里传感器的安全、数据的风险也成为非常重的层次。

    那么如何解决这方面的安全问题呢?对此,百度安全事业部产品总经理韩祖利讲到:“安全不是一家或者一个公司就可以做好的,需要全行业一起建立一个共赢共生的安全生态。安全生态的建设,离不开关系、技术和数据三大关键点。”

    AI时代生态安全面临挑战

    在韩祖利看来,人工智能所面临的安全挑战,纵贯传感器、软件、数据、系统、网络多个层面。当下,尽管人工智能在某些方面精准度可超过人类,显著提升规则化安全工作的效率,但在复杂情况下还远远达不到,且极易受干扰。

    他举例称,比如我们在图片里恶意的插入一些信息,也就是通过数据投毒来欺骗机器人。

    此外,随着深度学习的发展,现在越来越多的智能设备开始应用生物识别技术,但这一技术也存在风险,因为生物特征极易被采集、复制、且复制成本低廉,此外人工智能行业尚缺乏统一标准,生物认证单靠一个因子并非完全可靠。

    智能摄像头也非常大比例的存在一些安全性的问题。如果摄像头是放在机房里还好,如果放在家里,那么对整个个人隐私威胁非常之大。

    近期,信通院泰尔实验室联合百度安全面向市面上的主流智能电视进行了安全漏洞测评,结果无一幸免。“AI时代假如没有安全,家里各种智能家居都会向你发出勒索请求。AI确确实实给我们带来了好处,而它带来的风险也是非常剧烈的,并且就在我们身边。”韩祖利说。

    共建安全生态离不开三个点

    针对AI可能带来的安全问题,并不是一家企业和公司就可以做好的,需要整个行业的共同努力,建立一个安全的生态来使整个行业获得更好的安全防护。

    对此,韩祖利总结了三个关键点。首先是关系,所谓的关系就是建立信任,包括人与人之间的信任、公司与公司之间的信任以及跨产业合作的信任。“因为合作,可能他们会对安全有更加清晰的认识,并且逐渐开始认可这方面,这就是合作产生的一种信任。”韩祖利说。

    其次就是技术,要防止碎片化。“我们经常看到因为交流较少,导致一家公司出了一款产品,另一家公司又做了另外一套系统,系统相互之间是完全间隔的,产业用户就非常痛苦,选择一个体系,整个碎片化就产生了。”韩祖利讲到:“对于这点,我们希望在技术上大家一起去建立一些行业的技术标准,规范很多产业的结构,尽量去做很多开源。”

    据透露,在九个月百度安全也会开源大概7款工具产品,这些工具产品也希望跟整个产业里一起来为企业服务。

    最后就是数据。大家都知道安全的核心就是持续的对抗,对抗最主要的东西就是数据,情报的本质也是数据。所以,无论在过去、现在或者是未来,数据对我们来讲都非常重要。“我们希望大家一起在整个数据脱敏下共享这些数据,甚至联合计算可以做到非常容易,既不会泄露用户的隐私,也不会泄露商业机密,同时我们安全的架构又可以成立。”韩祖利讲到。

    最后,韩祖利表示:“AI的来临是一个生产力变革的时代,但是我不是特别赞同AI是对人类有太大威胁的,在每个变革的时间节点,我们都解决了存在的问题,并且取得了很好的发展,因此在智能时代,作为一个安全的从业者,我觉得还是充满信心的。”

相关报告
  • 《如何破解人工智能“落地难”?》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-07
    • 目前人工智能在行业应用落地方面有哪些挑战?人工智能技术公司与传统行业在发展人工智能方面应该如何合作?面对人工智能技术浪潮的冲击,传统企业应该怎样把握这一波机遇?我与微软亚洲研究院副院长张益肇博士就这些问题进行了深入交流,希望张院长在人工智能产业多年的实践经验和洞察能为转型中的中国企业带来一些思路。 目前的人工智能犹如90年代的互联网 历史上任何一次新技术的爆发,都带来了超乎想象的新商业与新经济模式。从最近的一次看,90年代互联网发展初期,我们没有预料到商业社会将如此大规模的被影响和改变。互联网的影响开始于媒体,《纽约时报》、《华尔街日报》等媒体通过网站更新新闻,最终全媒体行业都面临转型压力。后来消费者逐渐通过互联网买书、租录像带。互联网对商业社会的影响有一个过程,人工智能时代也是一样。 一位粗心大意经常忘记按时归还录影带而不得不缴纳大笔罚金的电影爱好者,里德?哈斯廷斯,为了避免高额预期罚金的电影租赁模式而创办了Netflix公司。1999 年,成立不久的Netflix公司推出线上影片订阅服务。当时美国最大的影片出租连锁企业Blockbuster公司并没有预料到这个营业额不到自己千分之一的Netflix公司会成为日后的行业颠覆者,到 2007 年, Netflix注册用户数超过 750 万,年复合增长率高于 50%。2010年曾经的美国影碟租赁巨头Blockbuster申请破产。2011年美国第二大连锁书店Borders申请破产。 互联网发展初期,线下商业巨头没预料到新技术和商业模式的冲击将如此之大,没有将新兴互联网上的新模式看成潜在对手并引起重视,十几年后,这些曾经的巨头已经消失。 张益肇认为,同样的事情也将发生在人工智能时代,哪怕体量再大的公司,如果不能把握和了解新的趋势,将在这一波浪潮中被颠覆掉,反之,像Amazon,Netflix,因为新的技术,有机会去颠覆不同的行业。 人工智能之花将在哪些行业绽放 目前,一些与计算机视觉相关的应用,比如在安防领域,已经产生了比较大的变化。之前的安防行业采用的是事后追查责任的思路,通过查找监控录像,回溯历史记录。比如北京机场据说有超过两万个摄像头,这是不可能靠人力实时监控保障安全的。而目前通过人工智能,可以预防和实时阻止部分危险情况的发生。 未来,人工智能对金融、医疗、教育、制造、零售、运输(自动驾驶)、物流等行业都会产生很大影响。张益肇认为,在人工智能算法依赖大数据训练的阶段,产生的价值大的行业会发展的好——如果一个行业应用人工智能产生的价值够大,会有人愿意出钱标注数据。现在大部分人工智能是要靠大量数据来进行学习的,一个行业发展人工智能相关应用的前提是获得与行业、领域相关的,且标注、整理过的数据。 微软希望通过与金融、医疗、制造等行业少数的几家领头羊企业合作,把问题弄清楚,给出问题的有效解决方案,在此之后,才有可能将解决方案模块化,让更多的合作伙伴利用。目前微软亚洲研究院成立了旨在通过开放创新推动行业应用发展的组织“创新汇”,来加强与各行业的领先企业合作。 每一波技术浪潮都会大幅提高社会生产力。与20年前相比,互联网使社会生产力大幅提高。人工智能同样如此,但人工智能落地需要技术与行业公司深度合作。要实现全社会生产力提升,靠一两家企业做不到,需要很多有远见的领头羊企业共同合作。 以金融领域的人工智能应用为例,在基金管理和辅助股票分析方面,技术公司与金融公司各有所长。一些基金公司也有数据科学家的团队,有些做的是比较传统的数据挖掘,还不是很了解深度学习等人工智能技术。基于数十年经验积累,基金公司更擅长判断一只股票是否值得投资,哪些市场信息具有参考价值。而人工智能技术公司没有这方面的知识积累,但拥有先进的人工智能技术储备。通过业务公司与技术公司的合作,基金经理可以在人工智能的帮助下更好的分析市场。比如,有上市公司称由于今年春节较晚而影响了这一季度的销售额,分析师需要就春节对销售额的影响做一个分析和历史对比,分析这是公司的借口还是真实情况。每个上市公司都会有季报,内容几页到几十页的不等,要做很细的分析,除了看现在的,还要把去年、前年、甚至大前年的数据做对比,这么细的分析单靠人是不可能的,一个分析师要分析几十家公司,不可能每一份季报都看的非常细,这方面可以由人工智能来辅助分析。 人工智能技术企业要进入某一个垂直领域缺乏的是相关领域的数据和知识。假如与医院合作,由于技术企业没有经验丰富的医生,无法判断医学影像的数据是否正确。由于缺乏相关专业知识和经验,在出错的时候也无法判断是由于标注错误还是由于图像不够清晰造成。而技术企业与垂直行业互动的时候,需要让行业理解,人工智能不是超人类智慧,无法做到提供给机器一个数据库就可以得到想要的结果,这是目前双方合作前面对的挑战之一。由于数据需要标注整理,目前阶段的人工智能实现的前提,是以大量人为标注的数据为基础的。比如斯坦福大学建立的目前全球最大的图像识别数据库ImageNet里面数百万张照片也是很多人花费大量的时间标注完成后,才能让机器去学习。 中美人工智能应用的不同发展路径 人工智能在不同国家的发展,与当地的产业发展特点相关,取决于技术与当地产业的结合。以金融业为例,中美有两个主要差异,第一,在技术应用方面,美国金融市场竞争比较激烈,很多银行早就习惯通过技术手段竞争。一个金融公司里10%的员工是IT和技术员工,在中国,这个比例大概是3%-4%。在美国,人工智能在金融方面的应用相对走的更往前,很多对冲基金是通过机器学习、数据挖掘,量化基金通过程序来管理基金。与美国比,中国处于相对早期。另一方面,两国在金融领域的监管法规有一定差异。在美国,没有太多监管限制通过开发程序管理基金,只要敢冒险,自负盈亏,相比之下中国则整体相对谨慎。 在其他应用领域,中美也呈现出各自的特点。对于中美两国,人口红利都在消失,但两国人工智能应用很有可能先在各自比较发达的产业中得到发展。在美国,服务业比较发达,目前人工智能的应用更多的是从服务业角度考虑机器人的应用。比如在医院、疗养院里照顾老人。在中国,制造业转型已经成为趋势,制造业工人的重复性工作对于年轻人不再有吸引力,在深圳,很多制造业企业招不满员工。不光是在中国,越南等一些发展中国家也会逐渐遇到类似的问题,在这种情况下,制造业将更多的依靠人工智能等技术手段,未来中国先把这些技术做成熟以后,也可能将技术应用到其他国家去。 如何判断人工智能领域的技术创新是否能落地? 如何判断目前正在进行的人工智能技术开发是否有落地的可能?比如,是否能够将语音识别技术应用在会议在线翻译的场景?张益肇称微软亚洲研究院在进行技术创新商业化的时候使用BTX(Business商业、Technology技术、Experience用户体验)的判断原则。第一步要判断技术是否成熟,这个场景是不是能够实现?开会的时候自动录音、自动转换成文字,要实现技术在真实场景中的应用会涉及到很多因素,有可能讲话内容中文夹杂英文,有可能发言人离麦克风比较远,声音听不清楚。所以要判断,技术本身是否成熟?如果要做成产品,技术本身能否达到?第二,如果技术达到了,用户体验怎么样?用户会不会用?如果产品本身的技术和用户体验都不是问题,要考虑有没有办法产生一定的收入,使产品维持下去并持续改进?比如会议实时翻译的例子,如果这种服务定价每小时3000美元,很难卖出去。但如果定价是每小时3美元,就很有可能。第一是技术;第二是场景中的体验,是否做出用户能用的东西;第三是可运营的商业模式,有没有可能在用户能接受的成本下启用这个服务。 过去一年多,关于人工智能的诸多报道导致公众的一些误解。人工智能在围棋界能够成为第一名是否意味着人工智能比任何人都聪明?很多人都能学会开车,但让电脑安全的开车要比赢一盘围棋困难得多。围棋是有限的变量,而开车涉及到更多的判断。如果路边有人对你招手,是因为有个警察还是因为发生了事故请你停下来?或者有人想搭便车?还是有人车坏了请你帮忙修?要了解这个场景,需要更多的变量,这个人穿制服吗?有车子抛锚吗?这些变量是千变万化的,电脑还不能理解这个人的表情是什么样的,表情有什么含义?人类所谓的“常识”对电脑来说是非常难的事情。 传统行业尤其是企业的最高领导需要对人工智能有更客观的认识,尽可能去接触和理解人工智能能做什么,哪些还不能做,不应有过高的期待。毕竟有些技术还没到成熟的阶段。目前有很多人工智能在线课程和书,也有很多免费的网上平台鼓励大家去尝试,这个门槛正越来越低。传统企业的转型,第一要了解技术,第二要了解自己的行业,思考通过人工智能解决什么问题对自己的企业最有价值。单纯为了吸引眼球的项目,不如做关键的、能对企业产生效用的项目,转型的成功性就会大很多。 这一波人工智能浪潮类似互联网初期,无论企业规模大小,任何时候拥抱AI都不嫌早。企业最终将由于人工智能的应用而大幅提升生产效率。大型企业内部本身有IT部门,资源也多一些,有条件(人力和相关资源)去研究AI,可以选择是自己做还是去寻求外部帮助,小企业则可能需要找人做。大小企业的思考模式和基本逻辑相同,只是具体的操作方式不同。 关于传统企业是否需要自己的技术团队,应该结合企业的自身情况,目前想做的项目难度有多大,是否需要专家的帮助。张益肇博士见过不少传统企业高管,他们普遍对人工智能很感兴趣,但是对人工智能的理解还有很多需要加强的地方。企业转型AI就好像人的健康问题。每个人都应该对自己的健康有基本常识,看难度判断是自己就能解决还是找专家。企业具备了这个前提,理解了自己的问题,理解了技术如何去应用,进一步分析判断事情的难度和风险有多大。比如,现在有很多关于聊天机器人的探讨,微软有小冰这样的聊天机器人,所以不少企业兴趣很高,也希望用聊天机器人来增强与客户的互动,那需要考虑聊天的内容是什么,如果出错的话成本是什么?如果是医院需要用来和病人互动,并且指导病人如何吃药,这样错误成本太高,就不建议通过内部团队开发。 处于人工智能技术应用起飞的前夜,这样探讨的价值在于,传统企业无论规模大小,都需要思考如何避免成为下一个Blockbuster或者Borders,并且是不是能够抓住技术浪潮提供的机遇,实现业务模式转型。毕竟等到人工智能技术带来的用户达到一定浓度、新业务规模起飞时,再进行这样的投入已然是来不及了。 .
  • 《抓住人工智能发展机遇 打造新时代智能经济体》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-18
    • 五月津城,风暖人和。时隔一年,我们再次相聚天津,共同参加第二届世界智能大会。我谨代表全国政协和中国科协向大会召开表示热烈祝贺,向出席会议的国内外专家学者、企业家、新闻媒体人士等远道而来的各界朋友们表示诚挚的欢迎! 世界智能大会是面对新形势新需求,把握人工智能发展的重大历史机遇,引领世界人工智能发展新潮流的重要国际学术会议,是围绕世界科技发展的前沿、经济社会发展的需求、服务于创新驱动发展重大战略部署的重要举措。 这次会议以“智能时代:新进展、新趋势、新举措”为主题,展示世界智能发展的最新成果,探讨在智能时代大潮中,世界智能科技创新和发展的趋势,研究制定并发布一系列新举措,对于促进我国及世界智能科学发展具有重要意义。 人工智能是引领未来的战略性高科技,作为新一轮产业变革的核心驱动力,催生新技术、新产品、新产业、新模式,引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。习近平主席强调,人工智能技术发展将深刻改变人类生活、改变世界,要求我们在此高技术领域加快部署实施。 去年,中国政府出台了《新一代人工智能发展规划》,制定了三步走的发展目标,明确以加快人工智能与经济、社会深度融合为主线,以提升新一代人工智能科技创新能力为主攻方向,发展智能经济,建设智能社会。对深入推动人工智能产业创新发展,突出重点、抓住关键,具有深远的指导意义。 世界智能大会以“智能时代”为主题,广泛交流、深入研讨,抓住了科技创新发展的“牛鼻子”,不仅有利于京津冀协同发展,也有利于推动中国高质量发展,更有利于提升全球福祉。 女士们,先生们! 人工智能已经来到了人们的身边。 赤橙黄绿青蓝紫的各色共享单车成为城市路边的彩虹风景线、机场高铁“刷脸”进站、足不出户就可以买到心仪的丰富商品,就连在天津早上吃个煎饼果子都可以直接扫码支付,售卖师傅说:“讲卫生、不找钱、没假币。”短短几年时间人工智能技术已经深深影响了我们的生活方式。 丰富的应用场景更进一步推动了人工智能发展,也为世界智能产业发展提供了巨大且有无限潜力的市场空间。中国新一代人工智能技术在图像识别、语音辩解、行为分析等方面进入世界前列,在智能机器人、无人商店、机器翻译、共享汽车、自动驾驶等行业的新产品世人瞩目,在城市规划、智能交通、社会治理、卫生健康、农业科技和国家安全等领域的应用各具特色,形成了中国人工智能发展的独特优势。 去年,我有幸参与了《新一代人工智能发展规划》的编制发布和组织实施。今年年初,全国政协又组织高层次专家专题视察调研了人工智能科研和发展,召开了“人工智能的发展与对策”双周协商座谈会。中国科协也组织了专门的研讨会。综合调研和会议情况,我与大家分享四个方面体会与建议。 一是着力实体经济高质量发展,构建开源开放的产业生态。新一代人工智能的典型特征是应用驱动,在经济增长、社会发展的需求牵引下辐射、渗透于各行各业,提高实体经济发展的质量和效益,因此被称为引领产业变革的“赋能产业”。从国内外经验分析,近年来人工智能技术之所以能够快速拓展并取得应用成效,构建开源开放的共享平台、服务产品开发、营造产业生态是关键抓手: 一是领军企业牵头研发共性关键技术,并且向社会开放,服务于传统产业智能化升级,实现跨界发展,如百度的自动驾驶平台。二是通过面向社会的知识共享,聚集科研资源、加快技术和产品迭代和完善,科大讯飞语音翻译是典型代表。 三是通过线上线下相结合的众创空间,共享软件、硬件和计算资源,支撑大众创新创业,海尔家电设计平台、大疆无人机平台都是成功的典范。四是通过跨领域知识和技术集成,服务于社会发展,阿里城市大脑、腾讯医疗影像正在发挥日益重要的作用。 开源平台主要任务是为相关产业提供共性基础技术,而研发适用于市场的产品和服务依然需要以企业为主体的自主创新,要鼓励企业主动开拓市场,推进人工智能技术的广泛应用。 开源开放平台同样要重视知识产权保护。开源者研发开放共性技术,分享者也要向平台回馈应用技术,各方都要遵守契约精神,才能保证平台可持续发展。鉴于开源平台的公益性和社会性,需要政府部门制定相应法规,加强监管服务,并以财政补助的方式支持和维护开源平台健康发展。建设开源平台的领军企业和院校要通过优化合作方式、提高服务质量、创新商业模式,共同构建好产业生态,全面、有效、系统地促进实体经济高质量发展。 二是着力提升原始创新能力,夯实人工智能发展基础。中国人工智能发展的优势是发展的速度和应用的广度,短板是基础研究的深度和原始创新的能力。原始创新能力源于基础研究,成于产学研融合一体化的技术创新。 许多专家关注从AlphaGo到AlphaGo Zero的发展过程,认为人工智能技术正在从基于大数据的深度学习向基于拓扑学博弈论的自主学习演进,预示着人工智能基础理论的提升,带动“机器智能”向“类脑智能”发展。人工智能是计算科学和认知科学的结合,许多基础知识还没有掌握。要重视认知科学的基础知识,研究系统和行为的新规律,用新理论指导新发展。