《Cell子刊:朱永群团队等揭示单抗35B5中和Omicron的作用机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-04-10
  • 自去年11月份被发现以来,SARS-CoV-2 超级毒株奥密克戎(Omicron)迅速在全球传播并逐步取代了先前的受关注突变体(Variants of Concern,VOCs),奥密克戎毒株在Spike蛋白中有30多个突变,使其能够逃避多数治疗性中和抗体以及一些疫苗的免疫疫。因此,开发针对Omicron的强效中和抗体,具有重要临床意义。
    近日,浙江大学朱永群团队,联合中山大学邓凯团队、香港大学陈志伟团队和陆军军医大学叶丽林团队,在 Cell 子刊 Cell Host & Microbe 上在线发表了题为:35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved Spike epitope 的研究论文,报道了新冠VOCs的全谱人源单克隆抗体35B5能够强效中和Omicron,并揭示了其新颖的作用机制。

    研究团队发现,靶向受体结合结构域(RBD)的单抗35B5不仅能够强效中和先前的VOCs,对Omicron仍具有纳摩尔水平的中和作用。为了研究Omicron免疫逃逸以及35B5强效中和Omicron的结构基础,研究者解析了Omicron Spike胞外区(S-ECD)与35B5 Fab复合物的冷冻电镜结构,发现Omicron S三聚体具有更紧密的结构堆积和更加稳定的构象。

    进一步分析Omicron的RBD结构域,发现其所包含的15处突变明显改变了RBD的结构和表面静电分布,形成RBD的抗原转移;此外,Omicron的NTD共包含8处突变,其中G142D和L212I位于表面,产生NTD的抗原转移。
    那么,这些变化为什么并不影响35B5对Omicron的靶向作用呢?
    研究团队发现35B5在Omicron RBD上的抗原表位(epitope)在不同VOCs中是不变的,高度保守的epitope是35B5靶向Omicron及其他VOCs RBD的分子基础。
    接下来,研究团队分析了35B5的epitope为什么如此保守?结果发现,35B5表位残基不仅对于RBD的结构完整性和ACE2的结合至关重要,还参与控制了RBD构象的动态转变。RBD被ACE2识别必需RBD由down构象转变为up构象以暴露ACE2表位,NTD上的N165-聚糖和N234-聚糖夹住RBD的两边,如同一个开关控制着RBD的构象转变。其中,N165-聚糖对于维持RBD的down构象发挥关键作用,该聚糖与35B5 epitope上Y351,T470,F490和L452所形成的结合口袋具有大量相互作用。35B5结合S后,N-165聚糖脱离了结合口袋,N234-聚糖也完全释放至溶剂中,从而打开聚糖开关,使得down RBD转变为不稳定的up RBD,并最终导致S三聚体的解离,该独特的聚糖移位机制代表了一种新型的新冠病毒中和机制(如下图所示)。

    该项工作表明,35B5对新冠VOCs的全谱强效中和作用以及较高的抗原转移耐受性使其成为临床治疗的良好候选药物。

  • 原文来源:https://news.bioon.com/article/8c54e2393261.html
相关报告
  • 《Nature子刊:发展出针对柯萨奇病毒A16型的中和抗体并揭示其分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-01-11
    • 中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)丛尧研究组与上海巴斯德研究所黄忠研究组合作,在《自然-通讯》(Nature Communications)上,在线发表了题为Molecular mechanism of antibody neutralization of coxsackievirus A16的研究论文。该研究开发了两个针对柯萨奇病毒A16型(CVA16)的特异性单克隆抗体9B5和8C4,同时,基于冷冻电镜及生化分析,阐明了上述特异性抗体所介导的中和保护的功能和结构基础,为设计和开发CVA16疫苗和抗体疗法提供了重要信息。 CVA16是小核糖核酸病毒科肠道病毒属成员,是婴幼儿手足口病(HFMD)的主要病原体之一。CVA16感染可致轻微和自限性症状以及严重的临床并发症,如脑炎、心肌炎、肺炎,甚至死亡。然而,目前尚无疫苗和治疗药物。中和抗体在抗病毒保护免疫中起着关键作用。因此,开发CVA16特异性中和抗体并确定其功能、结合表位和工作机制颇为重要,有助于抗CVA16疫苗和药物的开发。 黄忠团队制备了两个CVA16特异性的单克隆抗体9B5和8C4。上述抗体具有强的体外中和活性,且在CVA16小鼠感染模型中显示出有效的预防和治疗效果(图a、b)。生化研究表明,两个抗体具有不同的中和机制:9B5通过阻断CVA16与吸附受体硫酸肝素的结合从而抑制病毒吸附到细胞表面;而8C4在病毒吸附后的阶段发挥作用,阻碍病毒和脱衣壳受体SCARB2的结合(图c)。丛尧团队解析了CVA16病毒颗粒分别结合抗体9B5和8C4所形成复合体的冷冻电镜结构。两个体系均获得了三个不同的构象,并被命名为C1、C2、C3(图d-o),其中CVA16-9B5-C1和CVA16-8C4-C2的分辨率均达到2.9埃。C1中的CVA16呈现成熟病毒构象(图d、g、j、m);C2中的CVA16为紧凑空壳构象,无病毒RNA(图e、h、k、n);C3中的CVA16为膨胀空壳构象,显示出明显的构象差异,包括衣壳的膨胀、二次轴孔洞的打开、病毒RNA缺失(图f、i、l、o)。结构分析表明,9B5结合在CVA16的五重轴上,每个单体结合一个9B5 Fab(图d)。9B5与CVA16峡谷区(canyon)北侧结合,且9B5在病毒衣壳上的结合足迹(footprint)可掩盖吸附受体硫酸肝素的结合位点(图p),从而抑制CVA16病毒与硫酸肝素受体结合。8C4结合在CVA16的三重轴上(图j)。8C4只结合紧凑构象的C1和C2状态,而不结合膨胀构象C3(图j-o)。此外,研究发现8C4与SCARB2在衣壳上的结合位点和空间上均有冲突(图q),揭示了8C4抗体抑制CVA16与SCARB2结合的结构基础。叠加CVA16-9B5-C1和CVA16-8C4-C1的冷冻电镜结构显示,8C4和9B5识别不同的、不重叠的表位(图r),因此这两种抗体可同时结合同一个CVA16病毒衣壳,组成非竞争性的抗体对。进一步分析表明,该抗体对显示出比单个抗体更强的中和能力,并展现出阻止病毒逃逸的能力。与此相对的是,当使用单个抗体时,病毒逃逸容易发生。 综上,该研究研发了一对独特的CVA16中和性单抗,并揭示了它们不同的结合表位以及中和作用机制。这对抗体的组合可作为抗人类CVA16感染的广谱治疗剂展开进一步开发,具有重要的理论意义和潜在的临床转化价值。  
  • 《研究揭示肠道病毒B家族成员入侵机制及中和机理》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-09
    • 肠道病毒是人群中流行广泛的病毒之一,不同家族不同血清型在不同国家地区、不同时间维度上层出不穷。一方面,当一种血清型在某一地区大规模流行,疫苗的介入使易感人群对其产生群体免疫效力,导致该血清型被压制,但同时另外一种或几种血清型会出现,经过一段时间进化,逐渐成为感染某一特定人群的主要病原。例如,EV71疫苗出现后,我国EV71的感染人数减少,却伴随CVA10、CVA6、埃可病毒等血清型流行的增加。肠道病毒流行谱的变化提示我们有必要对一些常见的以埃可病毒为代表的流行范围较广泛的病毒血清型开展研究,为未来潜在的疫情做准备。埃可病毒30(echovirus 30, E30)型为人源性肠道病毒B家族的重要成员,是引起人病毒性脑炎和脑膜炎最主要的病原体之一;近年来,在欧洲、亚洲以及南美洲呈较大规模的季节性和周期性流行。然而,人们对该家族成员的抗原特征、免疫特性以及入侵机制却知之甚少,目前也尚无能够用于防治肠道病毒B家族成员感染的特异性药物或疫苗。 9月4日,Nature Communications以背靠背的形式在线刊发中国科学院生物物理研究所研究员王祥喜/中国科学院院士饶子和团队,联合江苏省疾病预防控制中心研究员朱凤才团队,共同完成的研究型长文Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage与Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B subtypes。研究深入剖析E30的原子结构、细胞入侵机制及中和机理,为下一步针对肠道病毒的受体使用预测、免疫特性及该病毒家族的特异性药物或疫苗的开发奠定基础。这是该团队继完成对肠道病毒EV71,CVA16,CVA10及甲肝病毒HAV等不同生命周期的全颗粒结构和相关功能系列研究后的又一重要成果(Wang, X. et.al. Nat Struct Mol Biol 2012; Ren, J. et al. Nat Commun 2013; Luigi, De. et al. Nat Struct Mol Biol 2014; Wang, X. et al. Nature 2015; Wang, X. et al. PNAS 2017; Zhu, L. et al. mBio 2018;Zhu, L. et.al. Nat Commun 2018; Cao, L. et al. PLoS Biology 2019)。 研究人员借助冷冻电镜技术,捕获并解析处于不同生命周期的E30病毒颗粒的原子结构,即分辨率分别为3.4?、2.9?与2.9?的未成熟的空心态(E)颗粒、脱衣壳的中间态(A)颗粒以及成熟的全病毒(F)颗粒。结构分析显示,E颗粒与F颗粒均呈典型的“闭合”状态,二者表面结构非常相似,且均表现为高度有序化,提示二者可用于潜在的疫苗开发。这与该研究中基于细胞及动物水平的免疫实验结果一致。E30与肠道病毒A、B和C家族的代表性成员的结构比较显示,各成员病毒蛋白质1(viral protein 1, VP1) BC loop呈现高度不保守,提示其可作为区别不同肠道病毒血清型的重要结构特征;各成员VP1 GH loop和VP2 EF loop则相对保守,提示二者可作为设计广谱性抗肠道病毒B家族成员抗体的重要靶标。 研究人员解析分辨率分别为3.3?和3.6?的E30与其脱衣壳受体-新生儿Fc受体(human neonatal Fc receptor, FcRn)以及E30与其吸附受体-衰变加速因子(decay-accelerating factor, DAF/CD55)的复合物结构,从原子水平上阐明E30与其特异性受体识别与结合的结构基础。进一步分析发现,肠道病毒VP1 EF loop、VP1 GH loop以及VP2 EF loop共同构成肠道病毒及其脱衣壳受体识别的分子基础。基于此,研究人员利用计算不同病毒目标区域同源位点距离得到的k维向量以及不同病毒对间的距离矩阵,开发出可合理预测肠道病毒脱衣壳受体的计算方法(图1)。 此外,研究人员还筛选得到两株具较高中和活性且高度特异的单克隆抗体-6C5和4B10。竞争性表面等离子体共振(surface plasmon resonance, SPR)实验及实时荧光定量PCR(real-time PCR)实验等均提示这两株抗体是通过阻断E30及其受体的特异性结合从而发挥中和活性。相关实验表明,两株抗体具有协同互补的作用,二者的同时使用能够起到1+1>2效应。高分辨率的E30与6C5-Fab以及E30与4B10-Fab的复合物结构显示:6C5结合于病毒峡谷区的边缘而4B10结合于病毒峡谷区的内部;构成这两个中和性抗体所识别的构象型表位在肠道病毒B家族内部是相对不保守的。以上原子分辨率的结构信息为今后避开不保守区而主要针对保守区的广谱性疫苗或者药物的设计提供了重要依据。