《Nature子刊:发展出针对柯萨奇病毒A16型的中和抗体并揭示其分子机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-01-11
  • 中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)丛尧研究组与上海巴斯德研究所黄忠研究组合作,在《自然-通讯》(Nature Communications)上,在线发表了题为Molecular mechanism of antibody neutralization of coxsackievirus A16的研究论文。该研究开发了两个针对柯萨奇病毒A16型(CVA16)的特异性单克隆抗体9B5和8C4,同时,基于冷冻电镜及生化分析,阐明了上述特异性抗体所介导的中和保护的功能和结构基础,为设计和开发CVA16疫苗和抗体疗法提供了重要信息。

    CVA16是小核糖核酸病毒科肠道病毒属成员,是婴幼儿手足口病(HFMD)的主要病原体之一。CVA16感染可致轻微和自限性症状以及严重的临床并发症,如脑炎、心肌炎、肺炎,甚至死亡。然而,目前尚无疫苗和治疗药物。中和抗体在抗病毒保护免疫中起着关键作用。因此,开发CVA16特异性中和抗体并确定其功能、结合表位和工作机制颇为重要,有助于抗CVA16疫苗和药物的开发。

    黄忠团队制备了两个CVA16特异性的单克隆抗体9B5和8C4。上述抗体具有强的体外中和活性,且在CVA16小鼠感染模型中显示出有效的预防和治疗效果(图a、b)。生化研究表明,两个抗体具有不同的中和机制:9B5通过阻断CVA16与吸附受体硫酸肝素的结合从而抑制病毒吸附到细胞表面;而8C4在病毒吸附后的阶段发挥作用,阻碍病毒和脱衣壳受体SCARB2的结合(图c)。丛尧团队解析了CVA16病毒颗粒分别结合抗体9B5和8C4所形成复合体的冷冻电镜结构。两个体系均获得了三个不同的构象,并被命名为C1、C2、C3(图d-o),其中CVA16-9B5-C1和CVA16-8C4-C2的分辨率均达到2.9埃。C1中的CVA16呈现成熟病毒构象(图d、g、j、m);C2中的CVA16为紧凑空壳构象,无病毒RNA(图e、h、k、n);C3中的CVA16为膨胀空壳构象,显示出明显的构象差异,包括衣壳的膨胀、二次轴孔洞的打开、病毒RNA缺失(图f、i、l、o)。结构分析表明,9B5结合在CVA16的五重轴上,每个单体结合一个9B5 Fab(图d)。9B5与CVA16峡谷区(canyon)北侧结合,且9B5在病毒衣壳上的结合足迹(footprint)可掩盖吸附受体硫酸肝素的结合位点(图p),从而抑制CVA16病毒与硫酸肝素受体结合。8C4结合在CVA16的三重轴上(图j)。8C4只结合紧凑构象的C1和C2状态,而不结合膨胀构象C3(图j-o)。此外,研究发现8C4与SCARB2在衣壳上的结合位点和空间上均有冲突(图q),揭示了8C4抗体抑制CVA16与SCARB2结合的结构基础。叠加CVA16-9B5-C1和CVA16-8C4-C1的冷冻电镜结构显示,8C4和9B5识别不同的、不重叠的表位(图r),因此这两种抗体可同时结合同一个CVA16病毒衣壳,组成非竞争性的抗体对。进一步分析表明,该抗体对显示出比单个抗体更强的中和能力,并展现出阻止病毒逃逸的能力。与此相对的是,当使用单个抗体时,病毒逃逸容易发生。

    综上,该研究研发了一对独特的CVA16中和性单抗,并揭示了它们不同的结合表位以及中和作用机制。这对抗体的组合可作为抗人类CVA16感染的广谱治疗剂展开进一步开发,具有重要的理论意义和潜在的临床转化价值。

     

  • 原文来源:https://news.bioon.com/article/581be55505ef.html
相关报告
  • 《Nature子刊:我国学者发现泛冠状病毒广谱中和抗体新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-11
    • 中国科学院分子细胞科学卓越创新中心、复旦大学上海医学院及上海市公共卫生临床中心合作,孙兵研究员、谢幼华研究员、徐建青研究员、陆路研究员、丁建平研究员与凌志洋副研究员领衔,在 Nature Microbiology 期刊在线发表了题为:Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2 的研究论文。 该研究发现了一株泛冠状病毒广谱全人中和抗体——76E1,其不仅能有效地中和 beta 冠状病毒属的 SARS-CoV-2 及其重要突变体毒株,还可以中和不同冠状病毒属的七种人类冠状病毒。 该抗体靶向冠状病毒表面刺突蛋白(Spike, S)上高度保守的 S2’ 酶切位点及融合肽区域。病毒结合受体 ACE2 过程促进该表位的暴露以及 76E1 抗体结合,进而抑制 S2’ 酶切及病毒包膜和宿主胞膜的膜融合,从而抑制病毒进入宿主细胞内,达到中和病毒的目的。 冠状病毒分为 alpha、beta、gamma 和 delta 四个属。21世纪共爆发了三次高致病性人类冠状病毒流行,分别为 SARS-CoV、MERS-CoV 和 SARS-CoV-2,均归类于 beta 属。   除此之外,几种普通型冠状病毒也时常在人群中流行,导致无症状或轻型上呼吸道感染疾病,如 alpha 属的HCoV-229E 和 HCoV-NL63,beta 属的 HCoV-OC43 和 HCoV-HKU1。   2019年底爆发的 SARS-CoV-2 大流行对全球经济社会和人类健康造成重大威胁,SARS-CoV-2 突变株的不断出现及广泛传播也引起世界范围内的多轮流行。我国乃至全球已经接种的疫苗均基于 SARS-CoV-2 原始株开发,而突变体毒株已经逐渐对 SARS-CoV-2 原始株疫苗建立的免疫屏障产生了一定程度的逃逸作用,尤其是 Omicron 突变体所产生的免疫逃逸现象非常明显。因此,如何有效的应对 SARS-CoV-2 突变是目前应对疫情最紧迫的任务。另外,人类依然要面对未来爆发新的冠状病毒大流行的可能性。因此,开发有效的广谱抗冠状病毒的疫苗和药物有重大的社会需求。   大量的临床实践已证明,单克隆抗体临床干预在预防和治疗病毒感染方面非常有效。虽然国内及国际上已有新冠单克隆抗体药物上市,然而大部分已经对 Omicron 等变异株失效或疗效显著降低。   针对不断出现的病毒突变株,一个亟待回答的科学问题是:是否能开发广谱中和SARS-CoV-2及其突变体的抗体?这种抗体亦能对不同冠状病毒属的人类冠状病毒有广谱中和作用?其广谱作用的机制是什么?   为了解决上述科学问题,研究者们首先用 SARS-CoV-2 S 胞外区蛋白作为诱饵,从新冠病毒感染的康复患者外周血 PBMC 中,分离了 S 蛋白特异性的记忆 B 细胞,通过基因工程技术获得单个记忆 B 细胞来源的抗体重、轻链基因,并表达制备成全人源抗体。通过 ELISA 结合实验和病毒中和实验,筛选到一株广谱中和抗体——76E1,其可以广谱结合并中和 SARS-CoV-2 及其突变体毒株,包括 Alpha、Beta、Kappa、Gamma、Delta 和 Omicron。   在 hACE2 转基因小鼠上的真病毒攻击实验表明,用 76E1 单抗预防和治疗 SARS-CoV-2 感染时,可显著减少体重下降和降低肺部病毒滴度。进一步,研究人员发现 76E1 单抗可以广谱结合并中和不同冠状病毒属的七种人类冠状病毒,包括 SARS-CoV、MERS-CoV、SARS-CoV-2、HCoV-229E、HCoV-OC43、HCoV-NL63 及 HCoV-HKU1。在乳鼠上进行的 76E1 预防和治疗 HCoV-OC43 真病毒感染实验表明,76E1 可以可显著减少体重下降和降低脑部病毒滴度。以上实验提示该抗体有潜在的临床应用价值。 为了进一步研究 76E1 单抗广谱中和冠状病毒的分子机制,研究人员解析了 76E1 Fab/抗原多肽的晶体结构,发现 76E1 单抗主要靶向 S 蛋白的 S2' 酶切位点和融合肽区域。丙氨酸突变实验进一步确认 R815、E819、D820、L822、F823、K825 是 76E1 的关键识别表位。序列比对发现,以上表位在四种冠状病毒属中高度保守,这是 76E1 广谱中和能力的分子基础。比较有意思的是,76E1 的关键识别表位在融合前三聚体 S 蛋白全部或部分隐藏。并且,76E1 Fab/ 抗原多肽晶体结构中的抗原多肽与融合前三聚体 S 蛋白中的相应多肽也展现出不一样的构象。同时,亲和力实验表明 76E1 难以识别融合前三聚体 S 蛋白,而 RBD 抗体却能很好的结合融合前三聚体 S 蛋白。以上提示 76E1 可能识别了三聚体 S 蛋白从融合前到融合后变构过程中的中间态构象。 随后,研究者发现 S 蛋白结合受体 ACE2 过程促进了 S2' 酶切位点和融合肽的暴露,进而 76E1 结合该表位,从而抑制 S2' 酶切,阻断病毒包膜与宿主胞膜的膜融合过程,最终抑制病毒进入宿主细胞,中和病毒。冠状病毒利用这一策略来掩盖它们的融合过程中的敏感位点,从而限制抗体接触到这种敏感位点,并且仅在识别和感染宿主细胞时才将它暴露出来。   进一步的研究表明,76E1 在病毒感染后期具有很大的优势性,即在病毒结合宿主细胞受体后,阻断受体结合过程的 RBD 抗体失去中和活性,而 76E1依然可以中和病毒。利用以上原理,研究者发现 ACE2 蛋白与 76E1 单抗具有协同中和 SARS-CoV-2 的效果。同时,发现一些具有模仿 ACE2 功能的 RBD 抗体,如 CB6 等,与 76E1 也具有协同中和 SARS-CoV-2 的效果。这为基于抗体的抗病毒疗法提供新的升级版策略。 综上所述,该研究发现的单抗具有更宽的广谱中和活性,同时具有全新的中和机制。为应对 SARS-CoV-2 突变及未来新发冠状病毒爆发提供新的抗病毒策略,同时为新一代广谱冠状病毒疫苗的设计提供重要参考和理论依据。
  • 《Science:揭示超强效的合成纳米抗体中和新冠病毒机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-20
    • 在过去的20年里,有三种人畜共患的β冠状病毒进入人类群体,引起严重的呼吸道症状,死亡率很高。COVID-19大流行是由SARS-CoV-2引起的,SARS-CoV-2是这三种冠状病毒中最容易传播的一种。到目前为止,还没有针对任何冠状病毒的预防治疗方法获得批准,而且针对SARS-CoV-2的有效和广泛可用的疫苗的上市时间表仍然不确定。因此,开发新的治疗和预防方法仍然是至关重要的。 冠状病毒的病毒颗粒被含有负责病毒进入宿主细胞的同源三聚体跨膜糖蛋白---刺突蛋白(S蛋白)---的膜包围。S蛋白的表面暴露部分由两个结构域---S1和S2---组成。S1结合宿主细胞受体血管紧张素转化酶2(ACE2),而S2催化病毒和宿主细胞膜的融合。 包含在S1内的是受体结合结构域(RBD)和N末端结构域(NTD),其中RBD直接与ACE2结合。RBD通过一个柔远的区域连接到S蛋白的主体,并且可以以一种不可访问的向下构象(down-state)或一种可访问的向上构象(up-state)。与ACE2结合需要RBD处于向上构象,并使得它可被宿主蛋白酶裂解,从而触发病毒进入宿主细胞所需的S2构象变化。在SARS-CoV-2病毒颗粒中,S蛋白在一种活跃的开放构象(至少有一个RBD处于向上构象)与一种非活跃的封闭构象(所有三个RBD处于向下构象)之间进行交换。 在一项新的研究中,来自美国加州大学旧金山分校等研究机构的研究人员通过筛选酵母表面展示文库(含有大于2×109种合成纳米抗体序列)中与S蛋白胞外结构结构域(ectodomain)结合的纳米抗体序列,分离出中和SARS-CoV-2的单域抗体(纳米抗体)。 这些作者利用SARS-CoV-2 S蛋白的一种突变形式(SpikeS2P)作为抗原。SpikeS2P缺乏S1和S2结构域之间的两个蛋白分解裂解位点之一,并引入两个突变和一个三聚化结构域(trimerization domain)来稳定S蛋白的融合前构象。他们用生物素或用荧光染料标记SpikeS2P,并通过多轮筛选---先是通过磁珠结合随后通过荧光活化细胞分选---来选择展示纳米体的酵母(图1A)。相关研究结果近期发表在Science期刊上,论文标题为“An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike ”。 三轮筛选产生了21个独特的结合SpikeS2P的纳米抗体,而且ACE2胞外结构域(ACE2-Fc)的二聚体构造体可降低这种结合。这些纳米抗体分为两类。第I类纳米抗体结合RBD并直接与ACE2-Fc竞争(图1B)。这一类的典型例子是纳米抗体Nb6,它可与SpikeS2P和RBD单独结合时,结合常数KD分别为210nM和41nM(图1C)。第II类纳米抗体,以纳米抗体Nb3为例,它结合SpikeS2P (KD=61nM),但不显示与RBD单独结合。在存在过量ACE2-Fc的情况下,Nb6和其他I类纳米抗体的结合完全被阻断,而Nb3和其他II类纳米抗体的结合则适度下降(图1B)。这些结果表明,I类纳米抗体以RBD为靶点阻断ACE2结合,而II类纳米抗体以其他表位为靶点。事实上,表面等离子共振(SPR)实验表明I类和II类纳米抗体可以同时结合SpikeS2P(图1D)。 与SpikeS2P相比,I类纳米体与分离的RBD的结合呈现出一致更快的结合速率常数(ka),这表明RBD可访问性影响了KD。接下来,这些作者测试了I类和II类纳米抗体抑制荧光标记的SpikeS2P与表达ACE2的HEK293细胞结合的效率(图1E)。I类纳米抗体Nb6和Nb11作为两个最有效的克隆出现,IC50值分别为370和540nM。II类纳米抗体在该试验中几乎没有表现出活性。他们优先选择了两种I类纳米抗体:Nb6和Nb11,它们强劲地结合SpikeS2P,与SpikeS2P或RBD结合之间的ka差异相对较小。对于II类纳米抗体,他们优先考虑Nb3,这是基于它在纯化过程中较高的相对产量。 阻止SARS-CoV-2进入宿主细胞的策略旨在阻断ACE2-RBD的相互作用。虽然高亲和力的单克隆抗体作为潜在的治疗方法处于领先地位,但是它们通过哺乳动物细胞表达产生的成本很高,并且需要由医疗保健专业人员进行静脉注射。预防性使用需要大剂量,这是因为只有一小部分抗体能穿过气道内的上皮细胞层。相比之下,纳米抗体可以廉价地在细菌或酵母中产生。纳米抗体固有的稳定性使得它们能够直接气雾化递送到鼻腔和肺部上皮。事实上,靶向呼吸道合胞病毒的三聚体纳米抗体(ALX-0171)的气溶胶递送最近被证明可以有效地降低住院婴儿的可测量病毒载量。最后,骆驼衍生纳米抗体的潜在免疫原性可以通过既定的人源化策略来降低。 纳米抗体多聚体化已被证明可以通过亲合力(avidity)来提高靶标亲和力(affinity)。针对Nb6和mNb6而言,结构指导设计的多聚体构造体同时结合S蛋白的所有三个RBD,可导致它们的效力显著提高。此外,鉴于RBDs必须处于向上构象才能与ACE2结合,因此对RBD可访问性的构象控制可作为一种附加的中和机制发挥作用。事实上,当mNb6三聚体(mNb6-tri)与S蛋白结合时,它通过直接封闭结合位点和将RBD锁定在非活性构象来阻止ACE2结合。 II类中和纳米抗体展示了一种破坏S蛋白功能的潜在新机制。在预防或治疗性鸡尾酒中配对使用I类和II类纳米抗体可能强效地中和和阻止SARS-CoV-2的逃逸变体。因此,这些作者发筛选出的抗S蛋白纳米抗体的组合稳定性、有效性和多样化的表位参结合为为限制COVID-19大流行造成的持续死亡提供了一种独特的潜在预防和治疗策略。