《清华大学在多功能石墨烯宏观组装体方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-07-16
  • 清华大学材料学院朱宏伟教授课题组在《先进材料》(Advanced Materials)上发表题为《基于仿生矿化过程合成可再造型、自修复的多功能石墨烯复合材料》(Synthetic Multifunctional Graphene Composites with Reshaping and Self-Healing Features via a Facile Biomineralization-Inspired Process)的研究论文。该论文提出了一种室温下快速合成多功能石墨烯宏观组装体的方法。通过调节水分含量调控石墨烯组装体的软硬状态,实现反复造型功能及可回收性,有望用于石墨烯材料的多维多尺度快速加工与成形。

      石墨烯是一种具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备及宏观组装对其规模应用具有重要意义。目前,石墨烯宏观组装体的常规制备方法需要严格的反应条件,且一旦成形后,不可再被重塑或回收。因此,在需要复杂形状石墨烯结构与器件的应用场合,可任意塑性的石墨烯宏观体尤为重要。

      为解决上述问题,朱宏伟教授课题组将具有丰富官能团的氧化石墨烯加入仿生矿化凝胶体系,形成氧化石墨烯、无定形碳酸钙纳米粒子、聚丙烯酸交联网络结构(图1)。该复合材料在湿润状态下具有柔性、延展性及可拉伸性,可实现复杂造型。在干燥条件下保持原有造型,具有高强度、韧性及硬度。通过水分控制实现了两种状态的可逆转变。此外,该复合材料具有极佳的重塑性和自愈合能力,可进一步修饰或加工以满足各种特定的应用需求(如能源储存、促动器、传感器)。该方法具有简便、高效、低成本等特点,可推广至其它材料的灵活组装。

      

    图1. 氧化石墨烯宏观组装体的形成机理及造型展示

      近年来,朱宏伟教授研究团队专注于低维材料的可控制备、性能表征及应用技术开发,在结构设计、柔性器件、环境/能源等领域取得了多项重要成果。相关工作发表在《化学学会评论》(Chemical Society Reviews)、《先进材料》(Advanced Materials)、《纳米快报》(Nano Letters)、《科学进展》(Science Advances)等期刊上。

      本文第一作者为清华大学材料学院2014级博士生林舒媛,通讯作者为朱宏伟教授和日本东京工业大学芹泽武教授。本研究得到了国家自然科学基金委基础科学中心项目和面上项目的资助。

      论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201803004

相关报告
  • 《清华大学在熔融锂金属电池研究方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-20
    • 清华大学材料学院伍晖副教授课题组与斯坦福大学合作,在《自然能源》(Nature Energy)上发表了题为《一种用于电网储能的中温石榴石固态电解质基熔融锂电池》(An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage)的研究论文。该论文提出了一种面向大规模储能应用的全电池系统,设计并验证了以熔融锂金属为负极,锡铅合金和铋铅合金为正极,Li6.4La3Zr1.4Ta0.6O12(LLZTO)陶瓷管为电解质的液态金属电极(LME)电池。通过将固态电解质引入LME电池,有效降低了LME电池的运行温度,显著提高了电池的库伦效率和循环寿命。   随着风能、太阳能等间歇性可再生能源的大规模应用与智能电网的发展,大规模储能系统的研究得到了越来越多的关注。可充电电池具有能量效率高,成本可控,不受地形空间限制等优点,应用于储能领域具有较大的潜力。储能电池需要满足高功率、高安全性、长寿命和低成本等要求,新一代储能电池的开发,一直是电池研究领域的热点。LME电池是大规模储能电池的候选方案,在这一类电池体系中,如何降低电池的工作温度、减少电池的成本、提高电池的可靠性和安全性,是LME电池发展的主要挑战。   为解决上述问题,伍晖副教授课题组与美国斯坦福大学崔屹教授课题组合作,将固态电解质引入LME电池(如图),取代传统的熔融盐电解质(通常需要300℃以上的运行温度),将LME电池的运行温度降低至240℃。LLZTO固态电解质在240℃工作时具有远高于室温条件下的离子电导率,可以实现在大电流密度下的充放电,且可以有效抑制电池自放电和副反应,提升电池的库伦效率。这种新型电池系统未来有望在大规模储能系统中得以应用。   基于固态电解质的熔融锂电池的示意图   近年来,伍晖副教授研究团队专注于功能材料的制备及其在能源存储、柔性电子和环境等领域的研究与开发,在相关领域取得了多项重要成果。相关工作发表在《自然能源》(Nature Energy)、《自然通讯》(Nature Communications)、《科学进展》(Science Advances)等期刊上。   清华大学材料学院伍晖副教授和美国斯坦福大学崔屹教授为本文的通讯作者。清华大学材料学院访问学生金阳和材料学院2013级博士生刘凯为本文的共同第一作者。本研究得到了科技部青年973计划、国家自然科学基金委项目的资助。   论文链接:https://www.nature.com/articles/s41560-018-0198-9
  • 《清华大学曹化强《自然·通讯》:在黑磷烯纳米带研究方面取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-08-18
    • 8月6日,清华大学化学系曹化强教授课题组及其合作者在《自然·通讯》(Nature Communications)在线发表了题为“将块体黑磷以‘拉开拉链’方式制备成锯齿取向黑磷烯纳米带”(Unzipping of black phosphorus to form zigzag-phosphorene nanobelts)的研究论文。研究团队利用电化学手段控制氧分子浓度,制备出沿锯齿型(zigzag)取向的纳米带;同时,通过调节电流密度可实现黑磷烯纳米片、纳米带和量子点的可控制备;通过理论计算揭示了氧分子对黑磷烯实现定向切割的机理;利用所制备的黑磷烯纳米带构建场效应晶体管器件并对其载流子输运特性进行了深入研究。 黑磷烯二维纳米结构,包括单原子层黑磷烯和少层黑磷烯(<10层)。与石墨烯不同,黑磷烯本身具有带隙以及独特的各向异性。理论计算预测,黑磷烯在zigzag方向具有比摇椅型(armchair)方向具有更加优异的热学、力学以及半导体性质,因此zigzag取向黑磷烯纳米带在热电、柔性电子和量子信息技术等领域的应用引起了研究者的广泛兴趣。然而,受限于黑磷烯的稳定性以及现有的合成技术,黑磷烯纳米带有效制备成为其研究及应用的关键瓶颈。 受启发于黑磷在空气环境中可被氧化分解,团队设计了一种通过电化学方法,通过改变电流密度有效调节离子插层速率和黑磷烯周边的氧分子浓度,从而可控制备黑磷烯纳米结构的维度和尺寸,获得一系列黑磷烯纳米结构,包括纳米片、纳米带和量子点(图1)。结构表征证明了所制备的黑磷烯纳米带具有很好的结晶性和柔韧性。 图1 锯齿取向黑磷烯纳米带(z-PNB)的结构表征 图2 电化学解离黑磷晶体形成锯齿取向黑磷烯纳米带(z-PNB)的机理 该电化学解离机制认为制备过程分为两步,即离子插层和氧驱动解离过程(图2)。在电化学过程中,BF4-离子沿黑磷a轴方向(即[100]方向,沿zigzag方向)插入黑磷晶体层间,同时,氧分子被化学吸附、解离在黑磷表面上形成悬键氧,通过悬键氧与水分子形成氢键及P-O-P水解,导致P-P键断开,沿着zigzag方向以“拉开拉链”的方式持续进行,被解离成纳米带。理论计算分析、比较了各种氧分子在黑磷烯上的吸附和解离路径(图3)。结果表明,形成间隙氧对是解离黑磷晶体P-P键并最终形成zigzag取向黑磷烯纳米带的关键步骤。 图3 氧驱动解离块体黑磷反应机理的理论计算 研究团队采用铜网掩膜法设计制备了基于黑磷烯纳米带的场效应晶体管器件并探究了其载流子输运特性,可实现器件p-n型之间的转化,为黑磷烯纳米带在主动式矩阵显示技术、射频器件及互补型金属氧化物半导体器件技术中的应用提供了关键材料和开辟新的研究方向。 图4 黑磷烯纳米带(z-PNB)的电子性能 清华大学化学系教授曹化强、清华大学微纳电子系副研究员谢丹和英国剑桥大学材料科学与冶金系教授Anthony K. Cheetham为本文共同通讯作者,化学系博士生刘志方、微纳电子系博士生孙翊淋为共同第一作者。南开大学材料科学与工程学院、稀土与无机功能材料研究中心李伟教授,中国科学院高能物理研究所王嘉鸥副研究员参与了该项研究。本工作获得了国家重点研发计划和国家自然科学基金的支持。