《宁波材料所在大尺寸超导氮化物单晶薄膜制备方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-12-28
  • 与多晶薄膜材料不同,单晶薄膜材料具有长程有序的周期性原子结构。因此,单晶薄膜材料的缺陷更少,性能往往更优异(如更高的电子迁移率、更高的压电系数等),而且其具有可被实验观测的动量空间物理量(如电子的能带结构、元激发色散等),是电子信息、光学、凝聚态物理等领域的材料基础。而高品质、大尺寸单晶薄膜材料的可控制备是研制实用化集成光电子器件的前提。过渡金属氮化物(如氮化钛TiN、氮化钒VN等)是一类可应用在极端环境下的材料,在诸多领域具有广泛而重要的应用。由于具有优良的半导体、生物兼容性,优异的机械、化学与热稳定性,突出的超导和等离激元性能,其在超导量子信息和高温等离激元光子学领域的某些方面具有不可替代性。然而,作为一种难熔金属陶瓷,高品质、大尺寸过渡金属氮化物单晶薄膜的可控制备对生长温度、生长气压、生长气体、晶格匹配等各方面都提出了极高的要求,是相关领域长期以来的一项挑战。

      中国科学院宁波材料技术与工程研究所先进纳米材料与器件实验室量子功能材料团队曹彦伟研究员等近年来一直致力于高品质过渡金属氮化物单晶薄膜的制备及其物态调控研究。前期,他们自主研制了氮化物单晶薄膜生长专用的原子级溅射外延设备(专利ZL 202020835160.9,202011297238.7,202010512090.8,AIP Advances 10, 055113 (2020);ACS Photonics 8, 847 (2021)等)。近期,博士生毕佳畅、张如意助理研究员、曹彦伟研究员等,解决了TiN单晶薄膜大失配外延生长的难题(Phys. Rev. Mater. 5, 075201 (2021)),成功在晶格失配高达~-15.4% 的YAlO3衬底上实现了高质量TiN单晶薄膜的外延。与高俊华副研究员、曹鸿涛研究员等合作开展了椭偏光谱测量,表明该大失配外延薄膜仍然具有优异的等离激元性能,该工作对构建氮化物-氧化物混合光电子器件提供了新思路。论文链接:https://journals.aps.org/prmaterials/pdf/10.1103/PhysRevMaterials.5.075201。

      最近,在上述基础上,张如意助理研究员、博士生毕佳畅、曹彦伟研究员等进一步克服了大尺寸单晶薄膜的制备难题,分别在晶圆级(2英寸)刚性(蓝宝石Al2O3)与柔性(氟晶云母F-mica)衬底上实现了TiN单晶薄膜的制备与物态调控。由于具有较大的刚性,块体无机功能材料通常在弯折下会产生显著裂纹,但是将无机功能薄膜材料沉积在柔性衬底上可以获得良好的柔性。然而,柔性衬底一般为有机材料,其存在结晶程度低、晶格不匹配、不耐受高温的缺点,无法满足柔性TiN薄膜外延的要求。他们将单晶二维层状材料——氟晶云母(F-mica)替代有机材料作为柔性衬底,实现了大尺寸柔性TiN单晶薄膜的制备(如图1a所示)。通过与中国科学院物理所博士生李欣岩、张庆华副研究员、谷林研究员合作,利用扫描透射电镜表征原子尺度下TiN/F-mica薄膜结构,表明薄膜具有良好单晶性质。通过与纳米实验室曹鸿涛研究员合作,利用椭偏光谱表征薄膜光学性质,结果表明该柔性TiN薄膜具有与刚性TiN薄膜可比拟的优异等离激元性能(如图1b所示)。进一步,他们发现通过弯曲薄膜施加的应变可以调控TiN的超导转变温度(5.2~5.3K),表现为面内拉伸应变可增强超导转变温度(如图1b所示)。通过与中国科学院海洋新材料与应用技术重点实验室黄良锋研究员合作开展第一性原理计算,结果表明应变可以调控TiN单晶薄膜中电子-声子耦合强度,从而改变超导转变温度(如图1c所示)。该研究工作为构建高性能柔性光电子与柔性超导量子器件奠定了材料基础。相关研究成果发表在ACS Appl. Mater. Interfaces, 2021,论文链接:https://doi.org/10.1021/acsami.1c18278。

      本研究工作得到国家自然科学基金(11874058、52025025、52072400、U2032126、12004399)、浙江省自然科学基金、宁波市重大科技专项(2018B10060)等项目的支持。

相关报告
  • 《宁波材料所在量子材料研究方面获得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-01-12
    • 磁斯格明子是一种非共线磁涡旋结构并受拓扑保护的准粒子。磁斯格明子因其可以做到纳米尺寸、非易失且易驱动从而被认为在下一代自选电子学器件如信息存储、逻辑运算或者神经网络技术等领域将会扮演重要角色。磁斯格明子的形成通常是由使磁矩倾向于垂直排列的反对称交换耦合(Dzyaloshinskii-Moriya interaction,DMI)引起的。DMI同时也是凝聚态物理等基础科学研究中的一个重要物理相互作用,所以DMI的研究和磁斯格明子的研究已然成为当前自旋电子学领域,同时也是量子材料研究热点。    DMI的出现要求打破磁性材料的空间反演对称性以及强的自旋轨道耦合作用(spin-orbital coupling,SOC)。因此目前实验上大多利用磁性薄膜和具有强SOC的重金属薄膜形成异质结来诱导出大的DMI,从而实现磁斯格明子态。但这些材料在实际应用过程中仍有诸如如何保证磁斯格明子的室温稳定性、可控读写和高密度等许多问题亟需解决。另一方面,近年来随着二维铁磁性薄膜的发现,二维材料在自旋电子中的应用越来越受到人们的重视,人们期待能在这些新材料中实现室温稳定可控的磁斯格明子。但是目前已制备出的二维铁磁材料如CrI 3 ,VSe 2 和Fe 3 GeTe 2 等单层薄膜,由于它们晶体结构对称性约束,导致它们都不能产生DMI,这就限制了它们在磁斯格明子领域的应用。为此人们需要探究如何才能在二维磁性材料中诱导出大的DMI,并且实现对磁斯格明子态的调控。    近年来,中国科学院宁波材料技术与工程研究所量子功能材料团队杨洪新研究员一直致力于磁斯格明子材料的研究( Nature Materials 17, 605 (2018); Nature Nanotechnology 11, 449 (2016); Phys. Rev. Lett. 124, 217202 (2020); Phys. Rev. Lett. 115, 267210 (2015); Phys. Rev. B 101, 184401 (2020); Physical Review B 102, 094425 (2020) 等)。近期,该团队提出利用二维多铁材料内禀的Rashba效应,不仅可以诱导出大的DMI,还能实现人们一直寻求的电场调控磁斯格明子。该工作开辟了二维材料中通过多铁性实现磁斯格明子的一体化电学调控新领域,以题为“Electrically switchable Rashba-type Dzyaloshinskii-Moriya interaction and skyrmion in two-dimensional magnetoelectric multiferroics”的论文以Rapid Communication形式发表在 Phys. Rev. B 102, 220409(R) (2020) 。    该团队注意到在具有垂直电极化的二维多铁材料中,其自发电偶极矩导致的电势差会在薄膜中产生强的Rashba效应,由此可以使传导电子在磁性原子间传递DMI,而不要额外的重金属元素来提高材料的SOC。并且利用二维多铁材料的磁电耦合,通过外加电场使电极化矢量翻转的同时也可实现DMI手性的翻转,如图1(a)所示。利用二维多铁材料的这一特性,可以在单一的二维多铁材料中实现可以相互转换的具有不同手性和极性的磁斯格明子态,如图1(b)所示。这可为利用磁斯格明子实现多态存储提供新的思路。为了实现以上的构想,该团队研究了CrN单层薄膜等多种二维多铁材料。他们首先通过第一性原理计算发现CrN单层薄膜中的确出现了DMI并且其大小达到了3.74meV /f.u.。通过分析DMI的能量来源,他们分析发现由简单的Rashba模型出发计算的DMI系数和直接从第一性原理计算得到的DMI是一致的。这两方面的分析表明CrN单层薄膜中的DMI是由体系Rashba效应导致的。利用计算的DMI等磁性参量,他们通过微磁模拟确认了在CrN单层薄膜可以实现磁斯格明子态。最后他们研究了电场对CrN单层薄膜的结构和磁性性质调控,并发现通过外加电场的确可以实现CrN单层薄膜的DMI大小和手性翻转。综合以上研究,研究者们提出了在CrN单层薄膜中可以实现电场对磁斯格明子的翻转调控。   该工作由梁敬华助理研究员,崔琪睿博士和杨洪新研究员合作完成。该工作得到了中国科学院基础前沿科学研究计划“从0到1”原始创新项目(ZDBS-LY-7021)、国家自然科学基金(11874059)、浙江省相关人才计划(LR19A040002)等项目支持。
  • 《突破 | 半导体所在大尺寸金刚石单晶异质外延生长方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-15
    • 作为一种超宽带隙半导体材料,金刚石具有禁带宽度大、载流子迁移率高,载流子饱和漂移速度大、临界击穿场强大、热导率高等优点,非常适合用于制备高频、大功率、耐高温、抗辐照的电子学器件以及深紫外波段的光电子器件,在新能源、6G通信、空间科学等领域具有广泛的应用前景。在半导体金刚石材料与器件研究中,大尺寸金刚石单晶衬底和外延薄膜的制备是一个重要的研究方向,但由于衬底与外延层之间极大的应力,其面临巨大的技术挑战。 在铱(Ir)复合衬底上结合偏压增强成核技术的异质外延方法是目前制备大尺寸单晶金刚石研究最广泛的方法。然而,在实际中实现大尺寸异质外延金刚石仍然具有挑战性。首先,异质外延体系中的晶格失配会在体系中引入较高的位错密度,对于几百微米厚度的金刚石,通常在107-109cm-2的范围内。此外,金刚石-铱复合材料体系内的晶格失配以及由于热膨胀系数差异导致的热失配会在金刚石薄膜中产生高达GPa量级的应力,导致金刚石外延层开裂。 中国科学院半导体研究所金鹏团队在金刚石生长中取得重要进展,采用激光切割图案化工艺缓解金刚石层异质外延生长过程中的巨大应力,在Ir/YSZ/Si复合衬底上实现了2英寸异质外延自支撑金刚石单晶的制备。结果表明激光图案化方法可以在大尺寸金刚石生长过程中有效释放应力,为传统光刻图案化方案提供了一种更简单、更经济的替代方案。 图1 制备流程 图2. (a) Ir/YSZ/Si (001) 上异质外延金刚石的 θ-2θ 扫描 X 射线衍射图; (b) 金刚石(111)和Ir(111)在极角χ=54.74°下的面内φ扫描; (c) 金刚石{111}衍射峰的X射线极图;(d) 金刚石 (200)、(e) (311)和(f) (220)的摇摆曲线 图3. (a) 2 英寸自支撑金刚石单晶照片 (b) 等离子蚀刻后金刚石表面的刻蚀坑显微图像