《砷化铟镓单晶体管动态随机存取存储器》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2019-09-29
  • 西班牙的格拉纳达大学和瑞士的苏黎世IBM研究室一直致力于硅基III–V族材料的研究,用于无电容器单晶体管动态随机存取存储器(DRAM)。

    研究小组评论说:“这种无电容器的DRAM已经在硅材料中得到了证实,但是包括III-V化合物半导体在内使的其他材料相较下则属于未探索领域,尽管这些材料可能提高性能。”

    移除1T1CDRAM的电容器以减小单元尺寸。III–V化合物半导体中载流子迁移率的提高为降低工作电压和降低能耗提供了前景,例如砷化铟镓(InGaAs)。

    研究人员将其结构描述为与使用寄生浮体效应(FBE)存储信息的亚稳态双列直插式(DIP) RAM(MSDRAM)概念相关。FBE出现在绝缘体上半导体(-OI)结构中,其中半导体中的电势取决于偏置历史和载流子复合过程。设备主体中的电荷在读取操作中调节电流。

    MSDRAM原理使用前门和后门之间的耦合以及浮体效应和非平衡效应。在闸门创建前通道和后通道,空穴堆积在前沟道中,而后沟道被后栅驱动反转。累积的空穴调节了反向沟道中的电子密度,前沟道中较大的空穴密度使反向层中的电流增加。

    将MOCVD重生的n型源极/漏极区域升高25nm,并使用9nm等离子体增强的ALD氮化硅隔离层将其与栅极堆叠隔离。用锡掺杂源极/漏极为2×1019 / cm3。以0.5μm的宽度制造出具有各种栅极长度(LG)的最终器件。在背栅上施加正电压可切换通道,由于厚的BOX层,背栅的电流控制受到限制。但是,后通道中的电流由前通道中捕获的电荷调制,从而实现1T-DRAM性能的改善。

相关报告
  • 《硅基铟镓砷量子阱晶体管》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-03-31
    • 瑞士的IBM Research宣布称硅基射频III-V金属氧化物半导体场效应晶体管(MOSFET)的高频截止值最高,并且他们的设备优于最先进的硅RF-CMOS。 研究人员使用由磷化铟阻挡层定义的铟镓砷(InGaAs)量子阱(QW)通道,减少了边界陷阱对测量频率范围内跨导的影响。 使用直接晶圆键合将QW沟道材料集成在硅基掩埋氧化物(BOX)上,其中氧化硅上的硅层不是有意掺杂的。替代金属栅极制造工艺始于沉积非晶硅伪栅极。氮化硅用于源极/漏极间隔,使用原子层沉积(ALD)和反应离子蚀刻的组合实现间隔物形成。用于接触延伸的空腔由受控氧化和蚀刻的“数字”循环形成。数字蚀刻还从源极/漏极接触区域移除了顶部InP阻挡层。通过金属有机化学气相沉积(MOCVD)用n-InGaAs填充接触延伸腔。然后移除伪栅极并用氧化铝和二氧化铪高k栅极绝缘体以及氮化钛和钨栅极金属层代替。 20nm栅长MOSFET的输出电导比没有顶部InP屏障的参考器件高50%。顶部屏障的存在消除了半导体/栅极氧化物界面处的缺陷散射。当栅极长度为120nm时,QW MOSFET的峰值跨导比参考器件的峰值跨导大300%。在20nm的短栅极长度下,改善降低至60%。QW通道的有效移动性为1500cm2 / V-s,而没有顶部InP屏障的通道的有效移动性为500cm2 / V-s。研究人员评论说:“这种差异是因为使用QW减少了氧化物界面陷阱和表面粗糙度散射。” 20nm栅极长度MOSFET的截止频率(ft)为370GHz,最大振荡(fmax)为310GHz。该装置具有两个4μm宽的门指从中心杆分支。这些值代表了硅片上III-V MOSFET报告的最高组合ft和fmax。
  • 《复旦大学科研团队利用原子晶体硫化钼发明新的单晶体管逻辑结构》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-05-31
    • 复旦大学科研团队近日在集成电路基础研究领域取得一项突破。他们发明了让单晶体管“一个人干两个人的活”的新逻辑结构,使晶体管面积缩小50%,存储计算的同步性也进一步提升。如果成功产业化,将推动集成电路向更轻、更快、更小、功耗更低方向发展。相关研究成果已在线发表于《自然·纳米技术》。 “这项研究工作的核心内容是利用原子晶体硫化钼做出了新结构晶体管。在此基础上,团队发明了新的单晶体管逻辑结构,在单晶体管上实现了逻辑运算的‘与’和‘或’。”复旦大学微电子学院教授周鹏说。 “与”和“或”是构成计算系统的最基本逻辑单元。该研究工作使晶体管面积缩小50%,有效降低了成本,而原先需要两个独立晶体管才能实现逻辑功能,现在只要一个晶体管即可。研究还发现了可层数调控的晶体管逻辑特性,并提供光切换逻辑功能选项。 据介绍,这一新的逻辑架构可以通过器件级存算一体路径破解数据传输阻塞瓶颈问题,突破了现有逻辑系统中冯·诺依曼架构的限制。对此,周鹏打了个比方:“原先我们计算和存储数据需要两个房间跑,而现在所有数据的计算和存储都在同一个房间解决。” 在冯·诺依曼架构下,计算和存储是相互分离的。“可以理解为,房间A专门用来计算数据,房间B用来存储数据,数据在经过计算后要通过电子借由导线从房间A传输到房间B,这条导线就相当于连接两个房间的走廊。”周鹏表示,如今,数据的计算速度越来越快,但存储速度和传输速度却未能得到同步提升,冯·诺依曼架构的限制就主要体现在计算速度、存储速度和传输速度的不相匹配。 而复旦科研团队的研究则在物理架构上突破了冯·诺依曼架构的限制,只需“一个房间”就可实现计算和存储的功能,即“房间”内分层工作,第一层负责计算,第二层负责存储,两个表层在垂直空间上形成堆叠。 “就像两张纸摞在一起,它们在空间上是堆叠着的,数据的计算和存储只是在原地被相对抬高了一些而已。计算层的沟道电流可以影响到存储层,从而摆脱传输环节,实现存算一体、原位存储。”周鹏说。 据介绍,单晶体管逻辑结构研究如果得以继续推进,应用于规模化生产,将推动集成电路往更轻、更快、更小、功耗更低的方向发展。