《工程师们把成千上万的人工大脑突触放在一个芯片上》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2020-06-16
  • 麻省理工学院的工程师们设计了一种“大脑芯片”,比一块五彩纸屑还要小,它是由成千上万个被称为忆阻器的人工大脑突触组成的。忆阻器是一种硅基组件,模仿人类大脑中信息传递的突触。

    研究人员借鉴了冶金原理,用银、铜和硅的合金制造了每个忆阻器。当他们让芯片完成几个视觉任务时,芯片能够“记住”存储的图像并多次复制它们,与现有的纯元素忆阻器设计相比,这些版本更清晰、更干净。

    他们的研究结果发表在今天的《自然纳米技术》杂志上,展示了一种很有前途的新型神经形态器件忆阻器设计——这种电子器件基于一种新型电路,以模仿大脑神经结构的方式处理信息。这种受大脑启发的电路可以被植入小型便携式设备中,执行只有今天的超级计算机才能处理的复杂计算任务。

    到目前为止,人工突触网络是以软件的形式存在的。我们正试图为便携式人工智能系统构建真正的神经网络硬件,”麻省理工学院机械工程副教授Jeehwan Kim表示。“想象一下,将一个神经形态装置连接到你车上的摄像头,让它识别灯光和物体并立即做出决定,而无需连接到互联网。我们希望使用节能的忆阻器来现场实时地完成这些任务。”

    流浪的离子

    忆阻器,或记忆晶体管,是神经形态计算的基本元素。在神经形态器件中,忆阻器将充当电路中的晶体管,尽管它的工作方式更类似于大脑突触——两个神经元的连接点。突触从一个神经元接收到离子形式的信号,然后向下一个神经元发送相应的信号。

    传统电路中的晶体管通过在0和1这两个值中的一个之间切换来传输信息,并且只有当它接收到的电流信号具有一定强度时才这样做。相比之下,记忆电阻器会沿梯度工作,就像大脑中的突触一样。它产生的信号会根据它接收到的信号的强度而变化。这将使单个忆阻器具有多个值,因此比二元晶体管执行范围更广的操作。

    和大脑突触一样,忆电阻器也能够“记住”与给定电流强度相关的值,并在下一次接收到类似电流时产生完全相同的信号。这可以确保一个复杂方程的答案或物体的视觉分类是可靠的——这一壮举通常涉及多个晶体管和电容器。

    最终,科学家们设想记忆电阻器将比传统晶体管需要更小的芯片面积,使功能强大的便携式计算设备不依赖超级计算机,甚至不连接互联网。

    然而,现有的忆阻器设计在性能上是有限的。一个单忆阻器是由一个正电极和一个负电极组成,由一个“开关介质”或电极之间的空间隔开。当一个电极被施加电压时,离子从该电极流过介质,形成一个“传导通道”到另一个电极。接收到的离子构成了记忆电阻器通过电路传输的电信号。离子通道的大小(以及忆阻器最终产生的信号)应与刺激电压的强度成正比。

    Kim说,现有的记忆阻电阻器设计在电压刺激一个大的传导通道或者从一个电极到另一个电极的大量离子流动的情况下工作得很好。但是当忆阻器需要通过更薄的传导通道产生更微妙的信号时,这些设计就不那么可靠了。

    传导通道越薄,从一个电极到另一个电极的离子流动越轻,单个离子就越难保持在一起。相反,他们倾向于离开群体,在媒介中解散。因此,在一定的小范围电流刺激下,接收电极很难可靠地捕获相同数量的离子,从而传输相同的信号。

    借用冶金

    金和他的同事们通过借鉴冶金学的一项技术找到了绕过这一限制的方法。冶金学是将金属熔合成合金并研究其综合性能的科学。

    金说:“传统上,冶金学家试图在大块基质中加入不同的原子来强化材料,我们想,为什么不调整忆阻器中的原子相互作用,加入一些合金元素来控制介质中离子的运动。”

    工程师通常使用银作为忆阻器正极的材料。金的研究小组查阅了文献,寻找一种可以与银结合的元素,有效地将银离子结合在一起,同时使银离子快速流经另一个电极。

    研究小组认为铜是理想的合金元素,因为它能与银和硅结合。

    金说:“它起到了桥梁的作用,稳定了银硅界面。”

    为了用他们的新合金制造忆阻器,研究小组首先用硅制造了一个负极,然后通过沉积少量铜制造了一个正极,接着是一层银。他们把两个电极夹在非晶硅介质周围。就这样,他们用成千上万的忆阻器制成了一毫米见方的硅芯片。

    作为芯片的第一次测试,他们重现了美国队长盾的灰色图像。他们将图像中的每个像素等同于芯片中相应的忆阻器。然后,他们调整了每个记忆电阻的电导,这些电导的强度与相应像素的颜色有关。

    与其他材料制成的芯片相比,该芯片能产生同样清晰的盾牌图像,并能“记住”图像并多次复制。

    研究小组还对芯片进行了图像处理,对记忆电阻编程以改变图像,在这个MIT的Killian Court案例中,采用了几种特定的方式,包括锐化和模糊原始图像。同样,他们的设计比现有的忆阻器设计更可靠地产生了重新编程的图像。

    “我们使用人工突触来做真正的推理测试,”Kim说。“我们希望进一步发展这项技术,使其拥有更大规模的阵列来完成图像识别任务。有一天,你可能可以携带人工大脑来完成这些任务,而不需要连接到超级计算机、互联网或云。”

    这项研究的部分资金来自麻省理工学院研究支持委员会基金、麻省理工学院- ibm沃森人工智能实验室、三星全球研究实验室和美国国家科学基金会。

相关报告
  • 《MIT研究人员将数万个人工大脑突触放在一块芯片上》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2020-06-18
    • 据外媒Neowin报道,来自麻省理工学院(MIT)的研究人员展示了一种新颖的电子装置的记忆电阻器(Memristor)设计,它可以模仿大脑的神经架构来处理信息。从本质上讲,麻省理工学院的“芯片上的大脑”比一张纸屑还小,但却容纳了数以万计的硅基元件(称为忆阻元件),这些元件可以模仿人脑中的信息传输突触。这种“芯片上的大脑”是神经形态设备大家族的一部分,它从大脑的神经突触中获得灵感,以执行复杂的计算任务。 现有的记忆电阻器设计在电压刺激大量离子从一个电极流向另一个电极--一个大的传导通道的情况下工作良好。但这些设计在较薄的传导通道中缺乏可靠性。来自麻省理工学院的团队在工作中解决了这一特殊领域的问题。为了开发这种新颖的设计,他们从冶金学中借用了一个关键概念,基本上是指合金与其组成金属相比具有不同的物理特性。 受此启发,研究人员将银与铜结合在一起,制成膜电阻的正电极,并使用硅制成其负电极。这种巧妙的设计选择使得离子能够沿着薄的传导通道进行一致而可靠的传输。“他们将两个电极夹在非晶硅介质周围。通过这种方式,他们图案化了一个毫米见方的硅芯片,其中有数以万计的忆阻元件。” 在神经变形装置准备好后,研究人员用它来“记忆和重现”美国队长盾牌的灰度图像。为此,他们将图像中的每个像素等同于芯片中对应的忆阻元件,然后调制每个忆阻元件的电导,其强度与对应像素中的颜色相对。 在这项测试中,与其他材料制成的芯片相比,神经形态芯片的表现更好。他们还对其进行了图像处理任务。然而,该器件再次能够超越竞争性的记忆电阻器设计,可靠而有效地锐化和模糊了麻省理工学院基利安庭院(Killian Court)的图像。 该团队的研究成果已经发表在《自然》杂志上。
  • 《工程师们发明了一种智能微芯片,可以在电池耗尽时自动启动和运行》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2018-09-06
    • 物联网(IoT)虽然仍处于起步阶段,但它正在塑造许多行业的未来,并将在很大程度上影响我们的日常生活。将物联网设备从概念转化为现实的关键挑战之一,是在严格约束的能源条件下实现长期运行,从而要求极高的功率效率。物联网设备(如传感器)经常大规模部署在通常偏远且难以定期服务的地方,因此它们的自给自足必不可少。 目前,物联网设备中的电池比单片机要大得多,而且贵上三倍。它们的大小由传感器节点的生命周期决定,这直接影响到它们需要改变的频率。这对电池的维护成本和对环境的影响有着重要的影响。为了延长电池的使用寿命,电池通常通过从环境中获取有限的能量来慢慢充电,比如使用太阳能电池。然而,现有的物联网设备在没有电池的情况下无法运行,小电池更频繁的完全放电。因此,电池小型化往往导致物联网设备的高度间断运行,因为每次电池耗尽能量时,物联网设备就会停止工作。 为了解决这一技术差距,新加坡国立大学(NUS)的一个工程师团队开发了一种名为BATLESS的创新微芯片,即使电池耗尽,这种芯片仍能继续运行。BATLESS的设计采用了一种新型的电源管理技术,它可以在没有任何电池辅助的情况下在昏暗的光线下自动启动并继续工作,使用的是非常小的片上太阳能电池。这一研究突破大大减少了为物联网传感器节点供电所需的电池大小,使其体积缩小了10倍,生产成本也降低了10倍。这一突破是在2018年旧金山国际固态电路大会(ISSCC)上提出的。 新加坡国立大学的研究小组的领导人,副教授马西莫Alioto电子与计算机工程系的新加坡国立大学工学院,说:“我们已经表明,电池用于物联网设备可以大幅减少,因为他们并不总是需要保持连续操作。解决这个基本问题是实现物联网传感器节点不使用电池的终极愿景的一个重大进展,它将为拥有一万亿物联网设备的世界铺平道路。 没有电池 电池无差异是物联网设备在电池耗尽时仍能继续运行的能力。它是通过在两种不同的模式下工作实现的——最小能量和最小功率。当电池能量可用时,芯片运行在最低能量模式,以最大化电池寿命。然而,当电池耗尽时,芯片会切换到最低功率模式,并以大约0.5纳瓦的微弱功耗运行——这比智能手机打电话时的功耗小了10亿倍。一块面积约为半平方毫米的小型片上太阳能电池可以提供能量,或者从环境中获得其他形式的能量,比如振动或热量。 芯片在最小能量和最小功率模式之间切换的能力,转化为电池从厘米到几毫米的大规模小型化。这种无蝙蝠的微芯片能够不间断地感知、处理、捕获和时间戳感兴趣的事件,并在电池恢复可用时将这些有价值的数据无线传输到云中。尽管在没有电池的情况下处于最低功率模式,微芯片的减速速度对于许多物联网应用来说仍然足够,这些应用需要感知温度、湿度、光线和压力等参数在时间上的缓慢变化。在许多其他应用中,BATLESS非常适合于智能建筑、环境监测、能源管理以及生活空间适应居住者的需求。 Assoc教授Alioto补充说:“没有电池的芯片是第一个不受电池电量影响的新型芯片。在最低功耗模式下,它使用的功耗是为固定最低功耗操作而设计的最佳微控制器的1000到100000倍。与此同时,我们的16位微控制器也能比最近设计的用于固定最小功率操作的其他微控制器快100,000倍。简而言之,无蝙蝠的微芯片涵盖了非常广泛的可能的能量、功率和速度权衡,通过两种不同模式提供的灵活性是允许的。 自动起动没有电池 BATLESS公司还配备了一种新的电源管理技术,这种技术可以在没有电池辅助的情况下,直接由芯片上的微型太阳能电池供电,从而使操作能够自启动。研究小组在50勒克斯室内光强度下演示了这一过程,这相当于黄昏时可用的昏暗光线,相当于纳米功率。这使得BATLESS对电池的可用性漠不关心,解决了之前在无电池芯片上的一个未解决的挑战。