《北航提出高性能超强纳米复合材料 潜力巨大登《Nature》》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-04-14
  • 诸如骨骼、牙齿和软体动物外壳之类的生物材料以其优异的强度、模量和韧性而闻名。这样的性质通常归因于无机成分增强了纳米纤维的层状微观结构,尤其是具有韧性有机基质的二维(2D)纳米片。在这些生物结构的启发下,包括逐层组装法,浇铸法,真空过滤和磁场辅助在内的合成策略已用于开发层状纳米复合材料。如何以一种普遍、可行和可扩展的方式生产超强层状纳米复合材料仍然是一个悬而未决的问题。

    近日,北京航空航天大学化学学院刘明杰教授(通讯作者)提出了一种在不相容水凝胶/油界面上利用剪切力诱导的二维纳米片排列来生产具有高度有序的层状结构的纳米复合材料策略。相关论文以题为“Layered nanocomposites by shear-flow induced alignment of nanosheets”于2020年4月8日发表在Nature上。

    研究结果发现,基于氧化石墨烯和粘土纳米片的纳米复合材料显示出高达1215±80MPa的拉伸强度,且杨氏模量为198.8±6.5GPa,这分别是天然珍珠的9.0倍和2.8倍。当使用粘土纳米片时,所得的纳米复合材料的韧性可以达到36.7±3.0 MJ/m2,这是天然珍珠的20.4倍。与此同时,抗拉强度为1195±60MPa。通过定量分析表明,排列良好的纳米片形成了关键的界面相,从而导致纳米复合材料展现出优异的机械性能。同时,这样的策略可以很容易地扩展各种二维纳米填料,应用于各种结构复合材料的制备,进而促进高性能复合材料的发展。

    液体流动可以通过控制三相接触线的运动来促进纳米粒子的定向组装。最近,作者观察到液滴可以在油/水/凝胶系统中的凝胶表面上迅速和完全铺展,被称之为超铺展。研究表明,含有氧化石墨烯(GO)纳米片和海藻酸钠(NaAlg)的反应溶液的液滴可以在硅油下完全溶胀的聚丙烯酰胺(PAAm)水凝胶的表面上在358 ms内实现超铺展,从而在水凝胶/油界面形成均匀的液体层(图1a)。同时通过使用一系列的挤出反应溶液,作者将超铺展过程扩展到一个连续的系统,从而大面积生产具有整齐排列纳米片的纳米复合薄膜(图1b)。

    图1. 层状纳米复合薄膜的制备及其机理。(a)反应溶液液滴(10μl,由0.09 wt%GO和0.18wt%NaAlg)在水凝胶/油界面处自发且完全铺展,形成薄的铺展溶液层;(b)连续制造大面积纳米复合膜的示意图;(c)在超铺展过程中剪切力诱导纳米片取向的机理的理论研究(上)和示意图(下);(d)来自两个相邻注射器的溶液A的边缘通过毛细作用力聚结成连续且均匀的液体层;(e)纳米片通过NaAlg与Ca2+的原位交联而固定。

    在这项研究中,在包含良好分散的GO纳米片和NaAlg的反应溶液中,通过选择适当的流速、相邻注射器之间的距离和水凝胶的移动速度,来自注射器的溶液A会迅速扩散并融合,从而在油/水凝胶界面形成均匀的超扩散溶液层。同时,预先浸入氯化钙溶液的水凝胶中的钙离子(Ca2+)会从水凝胶表面扩散到溶液A的超扩散层中与NaAlg发生交联,从而在3分钟之内将含有GO纳米片的超铺层转化为海藻酸钙(CA)水凝胶膜。随后将制备的CA水凝胶膜浸入水浴中,可以容易地从水凝胶表面分离并干燥后,得到连续且均匀的无缺陷的GO/CA纳米复合薄膜,宽度在5cm左右。

相关报告
  • 《青岛能源所制备出新型纳米复合材料用于锂硫电池隔膜改性》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-05-24
    • 锂硫电池,以单质硫作为正极,金属锂为负极,理论比能量可达2600Wh kg -1 ,是传统锂离子电池的3~5倍,且由于单质硫在地球中储量丰富、价格低廉,因此被认为是最具发展潜力的下一代高比能量二次电池体系之一。然而,由于锂硫电池在充放电过程中产生的聚硫化物易溶于电解液,并通过隔膜到达金属锂负极,进而产生严重的“穿梭效应”,引起活性物质损失、硫化物沉积不均,导致电池循环性能变差。    基于以上问题,青岛能源所先进储能材料与技术研究组研究人员从锂硫电池隔膜改性入手,在碳纳米管(CNT)表面引入过渡金属化合物CoNi 1/3 Fe 2 O 4 (CNFO),成功制备出CNFO@CNT纳米复合材料,并通过真空抽滤方式将其均匀涂布到商用隔膜表面。受益于CNFO的强极性吸附作用和CNT的导电作用,该改性隔膜可以有效吸附正极溶出的聚硫化合物并加以循环再利用。  将CNFO@CNT改性隔膜应用于锂硫电池中,实验结果证明在2.0 C下常温循环250圈后容量保持率高达84%。不仅如此,研究人员将改性后的锂硫电池置于高温60℃中测试其循环稳定性,发现在CNFO较强的化学吸附作用下,0.5 C经过100圈循环后,容量保持率依然能够达到78%,并保持98%以上的库伦效率。该改性材料相比CNT改性隔膜,无论是常温还是60℃高温,对锂硫电池的倍率及循环稳定性都有较大的提升。    相关成果已发表在ACS Applied Materials & Interfaces(Tao Liu, et al,Jianfei Wu. doi:10.1021/acsami.9b02136)上。此外,以固体电解质取代传统电解液的全固态锂硫电池可以从根本上解决聚硫化物的溶解难题,研究组在目前开发的锂硫电池和高电导率硫化物固体电解质的基础上,下一步将继续开发高性能锂硫全固态电池,相关成果已在J.Mater.Chem.A(2018, 6, 23486–23494),Electrochim. Acta(2019, 295, 684-692)等期刊发表,研究成果得到了中国科学院率先行动相关人才计划、国家自然科学基金、青岛能源所-大连化物所融合基金项目的支持。
  • 《深圳先进院高性能导热复合材料研究获系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-17
    • ,中国科学院深圳先进技术研究院集成所先进材料中心孙蓉研究员团队在高性能导热复合材料研究中取得一系列进展。   现代电子器件逐渐向高度集成化和高功率化发展,如果器件内部产生的热量得不到有效地散发,将会引起热失效。为了保证电器器件的工作表现和寿命,有效的散热成为了制约电子产品发展的主要因素。解决散热问题依赖于热管理材料的发展。导热材料通常由导热填料和聚合物基体组成,溶液共混是制备含有随机分布填料的复合材料的常用方法。然而,由于内部填料之间缺少有效互连,这种复合材料的导热性能提高率通常很低。缺少填料组成的导热通路意味着声子将在填料 / 基体的界面处发生更多的散热,带来更大的界面热阻。另一方面,加入大量的填料( >60 wt%/vol% )虽然会得到较为理想的导热性能,但是却会严重影响复合材料的机械性能和加工性,难以实用。因此,对于导热复合材料,如何在一个较低的填料含量下实现高的导热系数仍是一大挑战。   团队导热小组 么依民、曾小亮等 通过对填料进行取向的结构设计,结合碳化硅纳米线的高导热系数和长径比,采用冰模板法制备了宏观取向的碳化硅线网络,并以此为填料制备了高导热复合材料。对于声子来说,穿过聚合物最便捷的方式是在聚合物内部建立填料组成的通道。因此,含有高导热线状填料的聚合物复合材料会显示出导热性能的巨大提高。该复合材料的导热提高效率是其他报道的导热绝缘复合材料效率的 3~8 倍,内部具有三维互连填料网络的高导热复合材料在热管理领域有很大的应用潜力。相关论文 Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites (具有面外取向碳化硅线网络的高导热复合材料)在线发表于期刊 ACS Applied Materials & Interfaces ( IF=7.504 )上( DOI: 10.1021/acsami.8b00328 )。   该小组在三维氮化硼 - 石墨烯导热网络的构建方面也取得了研究进展。前期的研究者为了使得三维填料骨架有一定的机械强度,在三维骨架的制备过程中通常要加入粘结剂。然而,粘结剂与填料之间的声子谱不匹配会弱化填料骨架本身的传热,因此含有三维填料骨架的聚合物基复合材料的导热性能往往也不理想。项目团队以声子传输性质相近的氮化硼和石墨烯为组装单元,构建了了取向的声子导热网络。复合材料的面外导热系数达到了 5.05 Wm -1 K -1 ,高于其他报道的氮化硼基复合材料的导热数值。相关论文 Construction of Three-dimensional Skeleton for Polymer Composites Achieving a High Thermal Conductivity (构建含有三维导热网络的高性能复合材料)在线发表于期刊 Small ( IF=8.643 )上( DOI: 10.1002/smll.201704044 )。   该小组还提出了一种新颖的材料成型方法。受限于成本与生产设备等因素,真空辅助抽滤技术和冰模板法自组装技术难以实现产业化,无法为我国电子材料产业做出贡献。因此,曾小亮课题组探索并发明了一种简易、快速以及宏量制备导热填料的方法。通过将含有填料的水系分散液直接滴入液氮、结合冷冻干燥以及简易的自动推进装置,可以成功构筑三维的气凝胶球状填料。这种球状填料具有大的孔隙率和比表面积,直接参与到导热网络的构建当中,可以有效地提高复合材料的导热性能,在自动推进装置的辅助下可以实现实验室规模的小批量生产。此外,这种特殊的微观结构在吸附及能源领域也表现出巨大的应用潜力。相关论文 Liquid nitrogen driven assembly of nanomaterials into spongy millispheres for various applications (液氮驱动制备多功能三维气凝胶球)在线发表于期刊 Journal of Materials Chemistry A ( IF=8.867 )上( DOI: 10.1039/C8TA00310F )。   以上研究该项研究得到科技部重点研发专项( 2017YFB0406000 )、广东省创新科研团队( 2011D052 )、广东省 重点实验室( 2014B030301014 ) 和深圳市科技计划项目等项目的资助。