《科学家发现细菌Argonaute蛋白生成和加载DNA引导链的分子机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: Zhao
  • 发布时间:2017-03-27
  • 3月2日,《分子细胞》(Molecular Cell)杂志在线发表了中国科学院生物物理研究所王艳丽课题组及其合作者关于细菌Argonaute(Ago)蛋白独立生成和加载DNA引导链的最新研究成果,题为Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute。真核生物的Ago蛋白是RNA干扰通路的重要组分,它们利用小的RNA引导链靶向互补配对的RNA分子。RNA引导链的成熟和加载是通过不同的酶来完成的一系列催化反应。Ago蛋白也存在于原核生物中,它们参与抵抗外源入侵的DNA。与真核Ago蛋白利用RNA引导链靶向RNA分子不同,大量研究表明原核Ago蛋白利用DNA引导链靶向DNA分子。但是小干扰DNA(small interfering DNA, siDNA)引导链如何产生并加载到原核Ago蛋白的分子机制依然有待研究。

    嗜热菌(Thermusthermophilus)的Ago蛋白(TtAgo)能够在siDNA的引导下干扰转化的质粒。这些siDNA引导链均是5’磷酸化,长13-25nt。大部分TtAgo结合的siDNA在5’末端是脱氧胞苷,这暗示着引导链的生成和加载具有特殊的机制。

    在该项研究中,王艳丽课题组及其合作者发现TtAgo能够独立生成并选择性加载具有功能的DNA引导链。研究发现,TtAgo能够降解不稳定的双链DNA,产生小的双链DNA片段,TtAgo能够选择性地加载这些降解的DNA,之后引导靶DNA的降解。结合单分子荧光、分子动力学和结构研究,科研人员发现,TtAgo加载双链DNA分子偏好于引导链的5’末端相对位置处的过客链含有脱氧鸟苷。这就解释了为什么TtAgo在体内优先加载含有5’末端脱氧胞苷的引导链。王艳丽是该文的共同通信作者,高级工程师盛刚是该文的共同第一作者;生物物理所研究员娄继忠和博士张勇在分子模拟方面做了重要工作。该项研究得到了国家自然科学基金(项目编号:91440201)以及中国科学院战略性先导科技专项(B类,项目编号:XDB08010203)的资助,上海同步辐射光源为该研究提供了重要的技术支持。

相关报告
  • 《科学家发现蓝藻代谢与环境适应的新途径》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-30
    •         4月9日,《自然-化学生物学》(Nature Chemical Biology)杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所杨琛研究组题为The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase 的研究论文。该研究利用动态代谢流量组与代谢组分析技术发现了一条新的代谢途径,并且揭示了该途径为蓝藻适应环境所必需及其重要的进化及生态学意义。   生物在进化过程中形成适应外界营养环境变化的代谢系统及调控机制。例如,陆生动物进化出著名的鸟氨酸-尿素循环,用于处理食物中蛋白质分解代谢所产生的大量氨,而细菌和植物缺乏这一代谢途径。蓝藻(又名蓝细菌)是地球上最早出现的光合自养生物,它们利用水作为电子供体,利用太阳光能将CO2还原成有机碳化合物,并释放出自由氧,在地球生物圈形成和发展过程中起了关键作用。蓝藻广泛分布于自然界,包括各种水体和土壤中,对生物地球化学循环有非常重要的贡献。同时蓝藻在生物技术应用方面也极具潜力。尽管蓝藻在进化、生态、环境及生物技术等方面扮演着重要角色,但它们适应环境变化的细胞代谢动态调节机制仍不清楚。   中国科学院合成生物学重点实验室杨琛研究组利用前期开发的动态代谢流量组与代谢组分析技术,研究了蓝藻对外界氮源扰动的代谢响应,发现细胞内鸟氨酸和精氨酸之间存在活跃的代谢循环。进而发现该循环包含一步新的生化反应,即精氨酸双水解酶催化精氨酸水解生成鸟氨酸和氨。研究表明在氮源充足条件下鸟氨酸-氨循环促使氮同化及存储以最大速率进行,而在氮源匮乏时该循环使得细胞中的氮储存迅速分解,从而满足细胞的生长需要。因此,鸟氨酸-氨循环具有氮存储和活化的功能,对于蓝藻适应环境氮源缺乏和变化极其重要。与动物体内的鸟氨酸-尿素循环相比,鸟氨酸-氨循环更为古老,它的存在提示不同物种为适应其生存环境可能进化出各种鸟氨酸循环。鸟氨酸-氨循环在蓝藻中广泛存在,包括许多海洋固氮蓝藻,因此这一代谢途径对于海洋氮固定乃至地球的氮循环具有重要贡献。专家评论这项工作将引起化学生物学和微生物学领域研究学者的广泛关注,并对海洋学和农业方面的研究产生影响,同时在代谢工程和合成生物学领域应用前景广阔。   植生生态所博士研究生张昊为论文第一作者,研究员杨琛为通讯作者。该工作是与该所研究员、中国科学院院士赵国屏等合作完成的,得到了国家自然科学基金委、科技部和中国科学院等的项目资助。
  • 《科学家揭示外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短Ago亚型。原核长A和长B型Ago包括四个结构域,即N端结构域、PAZ结构域、MID结构域和PIWI结构域。这四个结构域在Ago蛋白系统发挥功能的过程中发挥重要的功能,缺一不可。原核短Ago不具备N端和PAZ结构域(图1a),因此原核短Ago在发挥功能时必须招募一些其他蛋白如SIR2和TIR蛋白,补偿N端和PAZ结构域的功能。     与真核生物相比,原核生物的Ago不仅可以介导由DNA引导的靶向DNA干扰,而且可以介导由RNA引导的靶向RNA或者DNA干扰。因此,原核生物的Ago展示出更多的功能,如靶向干扰噬菌体入侵和外源质粒DNA扩增、阻碍外源基因组的复制和增强基因的同源重组等。NAD+(烟酰胺腺嘌呤二核苷酸)是细胞生命活动周期中的重要代谢产物,NAD+的耗尽会直接导致真核或者原核生命个体的死亡。原核短Ago作为原核细菌的免疫系统关键蛋白,在识别入侵核酸后会激活NAD+酶的活性,耗尽个体的NAD+,诱导细胞的死亡,从而阻碍外源入侵基因组的复制和扩增,而这背后的结构机理仍然未知。     10月2日,中国科学院物理研究所/北京凝聚态物理国家研究中心丁玮团队和朱洪涛团队,与中国医学科学院和北京协和医学院病原生物研究所崔胜团队合作,在《自然》(Nature)上,发表了题为Nucleic Acid-triggered NADase activation of a short prokaryotic Argonaute的研究论文。该研究通过高分辨冷冻电镜技术与自主研发的自动化结构解析策略,在数百万计的冷冻电镜蛋白质颗粒中,高效地筛选并重构了与五个与原核短Ago系统相关的高分辨率三维结构——自抑制的功能单元单体、载有引导RNA/靶向DNA的功能单元单体、两个不同构象的功能单元的二聚体和功能单元的四聚体(图1b-c)。     研究以此结构为基础结合体外功能实验发现,在存在外源DNA的情况下,原核短Ago系统功能单元单体会从入侵基因的转录组中获得引导RNA片段。该引导RNA片段会与原核短Ago系统结合,并进一步通过碱基配对识别与引导RNA序列互补的目标DNA(图1b-c)。在此过程中,引导RNA可能从它在MID结构域中的结合位点上解离,以便引导RNA与靶向DNA的杂交双链的形成。杂交双链的形成会导致原核短Ago系统的构象发生变化,并通过MID结构域形成二聚体(图1c)。而在形成二聚体的过程中,一个功能单元的TIR结构域会发生翻转,且与另一个功能单元的TIR相互作用,使得两个TIR结构域以头尾相接的形式组织在一起,并在作用界面上形成一个完整的NADase活性位点(图1d)。两个二聚体会进一步通过它们的TIR结构域形成一个四聚体(图1e)。四聚体形式的组装体会发挥NADase的作用,耗尽细胞内的NAD+,导致细胞本身的死亡,阻碍了外源基因的扩增。该研究为剖析原核短Ago系统如何发挥功能奠定了重要的结构基础,并揭示了原核短Ago中NADase的激活机制以及导致细菌死亡的分子机理。