《突破 | 首个可重构自组织激光器问世》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-07-28
  • 随着激光技术的发展,随机激光器逐渐受到越来越多的关注。与由谐振腔和晶体增益介质组成的传统激光器不同,它的光放大来自于光从无序的粒子集合中重复散射,而不需要从一对由反射镜组成的谐振腔内来回反射。但是,随机激光器在设置好后往往处于静态,只能提供一些固定的实际功能。
    近日,英国伦敦帝国理工学院(UCL)和伦敦大学学院(ICL)的研究人员设计出了首个可重构自组织激光器。该团队实验中的自组装激光器,由分散在液体中的微粒胶体组成,具有非常高的增益。一旦足够多的微粒聚集在一起,它们就可以利用外部能量受激而产生激光。
    该团队认为,他们的工作将有助于开发用于传感应用、非常规计算、新型光源、无散斑照明的新型功能材料,或可用于模仿适应性、自我修复和集体行为等生物特性的智能光子材料。

    图1 研究团队设计的随机激光器,Janus粒子作为自组织激光活动的热点——其中激光甚至可以可控地从一个热点交换到另一个热点
    在实验中,悬浮在激光染料中的微粒如果靠得足够近,就可以用来放大外部的泵浦光。具体而言,如果微粒的局部密度上升到特定阈值以上,则从悬浮粒子反弹的泵浦光会保持足够长的时间,从而在光离开密集区域之前产生净增益,进而产生激光。但是,虽然通过胶体可以灵活调控输出波长,但距离开发可控调谐的随机激光器还有很长的路要走。
    由 ICL 物理学家 Riccardo Sapienza 和 UCL 化学家 Giorgio Volpe带领的研究团队希望找到一种方法,使随机激光器更具可编程性和适应性。为此,研究人员从生命系统中获得了启发,这些系统能够随着条件的变化而动态地自我组装和重新配置。Riccardo Sapienza 表示 是否可以创造出一种能够融合结构和功能、重新配置自身并像生物材料一样协作的激光器。
    为了实现这一目标,该团队使用Janus 粒子将胶体悬浮微粒可逆地吸引到中心点。Janus 颗粒是球形微粒,具有不同的物理或化学特性,在粒子的两侧分别呈现。该团队推断,当用激光泵浦时,设计合理的 Janus 粒子可以作为一种微型加热器,将其他微粒吸入其区域,使其自发组织成随机激光。

    图2 聚集在Janus粒子周围的微粒。虚线描绘了激光区域,粉/黄线显示了几个微粒的轨迹
    研究团队使用悬浮化学将 Janus 颗粒制成半径为 4.22 微米的二氧化硅小球,在一侧涂有 60 纳米厚的碳层。然后,研究人员将 Janus 颗粒倒入含有悬浮的较小二氧化钛 (TiO2) 微粒的乙醇溶液中,并添加了基于罗丹明的激光染料作为增益介质。
    当研究人员用波长为 633 nm 激光持续照射 Janus 粒子时, Janus 粒子正如预期那样吸收了入射光并升温。作为对局部加热的响应,嗜热悬浮的 TiO2 微粒涌向 Janus 粒子热点。
    紧接着,研究人员用第二个脉冲 532 nm 激光泵浦热点区域,并随着 Janus 粒子周围 TiO2 微粒浓度的增加监测该区域的发射光谱。当微粒的密度达到临界阈值时,系统的发射线宽缩小到其初始值的一半——这是随机激光发生的明显迹象。而当照射Janus粒子的连续波点关闭时,Janus粒子迅速冷却,TiO2粒子消散,随机激射停止。

    图3 激光微粒群在Janus粒子群周围形成不同的图案
    该团队还发现,多个自组织胶体激光器可以进行“协作”。 当两个Janus粒子相隔大约一个泵点的距离,粒子交替加热时,可以使胶体粒子分别聚集并发射激光,激光活性在一个区域和另一个区域之间有效且可控地交换。
    此外,该团队还展示了激光集群如何通过加热不同的Janus粒子在空间中传输,从而证明了该系统的适应性。“Janus”粒子也可以互相协作,创造出比简单添加两个粒子更有特性的粒子簇,比如改变它们的形状和增强它们的激光功率。
    ICL-UCL 团队设计的系统的有一个缺陷是配置速度较慢,重新配置随机激光器需要几分钟时间。但研究人员强调,未来可以通过使用光场或电场代替热刺激或除热刺激之外的系统来提高速度。下一步,该团队将研究如何改进激光器的自主行为,使其更加栩栩如生,助力开发用于传感、计算、光源和其他应用的“一类新的活性功能材料”。

相关报告
  • 《首个可重配置自组织激光器问世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-07-21
    • 通过模仿生命系统的特征,自组织激光有望带来用于传感、计算、光源和显示器的新材料。据近日《自然·物理》杂志发表的一项研究,英国伦敦帝国理工学院和伦敦大学学院的研究人员展示了第一个自发自组织激光设备,它可以在条件变化时重新配置。这项创新将有助于开发能更好地模仿生物特性的智能光子材料,如响应性、适应性、自我修复和集体行为。   虽然许多人造材料具有先进的性能,但要将生物材料的多功能性结合起来以适应各种情况,还有很长的路要走。例如,人体的骨骼和肌肉会不断重组其结构和组成,以更好地维持不断变化的体重和运动水平。   该研究论文合著者、帝国理工学院物理系的里卡多·萨皮恩扎教授表示,新激光器大部分是由晶体材料设计的,具有精确和静态的特性,它能够融合结构和功能、自我重组并像生物材料一样进行协作,这在模拟生物材料典型结构和功能之间不断演变的关系方面迈出了第一步。   激光是放大光以产生一种特殊形式的光的装置。该团队实验中的自组织激光是由分散在液体中的微粒组成的,这种液体具有放大光的能力。一旦足够多的微粒聚集在一起,它们就可以利用外部能量产生激光。   研究人员用外部激光来加热一个Janus粒子(一侧涂有吸光材料的粒子),微粒聚集在该粒子周围。这些微粒簇产生的激光可以通过改变外部激光的强度来开启和关闭,这反过来又控制了激光簇的大小和密度。   该团队还展示了如何通过加热不同的Janus粒子,在空中转移激光集群,展示了该系统的适应性。Janus粒子还可以协作,例如改变它们的形状和提高它们的激光功率。   论文合著者、伦敦大学学院化学系的乔治奥·沃尔普博士说:“如今,激光在医学、电信以及工业生产中的应用已经非常普遍。这种‘栩栩如生’的激光器有助于开发用于传感应用、非常规计算、新型光源和显示器的坚固、自主和耐用的下一代材料和设备。”   接下来,该团队将研究如何改善激光器的自主行为,使其更加鲜活灵动。这项技术的第一个应用可能是用于智能显示器的下一代电子墨水。
  • 《突破 | 日本研制出世界首个可调谐波长蓝光半导体激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-11-27
    • 近日,在一项新的研究中,日本大阪大学的研究人员研制出了世界上首个紧凑型、可调波长的蓝光半导体激光器,这一突破性进展为远紫外光技术铺平了道路,并为病毒灭活和细菌消毒等领域的应用带来了巨大潜力。该研究成果已发表在《应用物理学快报》(Applied Physics Express)期刊上。 日本大阪大学的研究团队此前已经证明了使用铝氮化物制成的横向准相位匹配装置以及包含SrB4O7非线性光学晶体的垂直微腔波长转换装置,可以在230 nm以下波长产生远紫外二次谐波(SHG)。 通常,这些先进的装置需要大型、昂贵的超短脉冲激光作为激发源。然而,实现实用的远紫外光源需要一个波长约为460 nm的蓝光半导体激光器。 蓝色氮化物半导体激光器最初是为蓝光技术设计的,现已扩展到铜和金等金属材料的加工,有望在下一代激光显示技术中得到应用。然而,这些蓝光激光器的的振荡波长通常是多重的。 高效波长转换器件具有非常窄的波长接收带宽,使单波长激光器成为理想的激发源。此外,精确的波长控制和可调性也是必不可少的。尽管已经报道了几种具有粗周期性结构的单波长蓝光激光器,但没有一种能实现可调谐波长控制。 该研究团队的首席作者Kusui Taisei解释道:“我们的可调谐波长氮化物半导体激光器在405 nm波段振荡,但其结构也可以轻松调整至460 nm,结合我们新的波长转换装置,这款激光器能够创造出一个紧凑、实用的远紫外光源,适合在室内环境中持续使用,有效地进行灭菌和消毒。” 凭借其紧凑的设计和更长的使用寿命,这项技术可无缝集成到冰箱、空调等家用电器中,为家庭环境提供更加健康和安全的生活条件,并为公共卫生带来广泛的益处。 图1.(a)具有周期性开槽结构的可调谐单模激光器示意图;(b) 开槽通道的横截面侧视图 图2.制造过程。(a) p电极和蚀刻掩模的形成。(b) 有源通道和开槽通道的形成。(c) 开槽通道的 SEM 图像。(d) 绝缘层的沉积和光刻胶开孔。(e) 绝缘体层开口。(f) 金属化和刻面涂层