《Nature | 宿主遗传对肠道微生物基因组变异的调控作用》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-01-04
  • 2024年1月3日,荷兰格罗宁根大学医学中心傅静远教授团队在Nature杂志以长文形式发表了题为Host genetic regulation of human gut microbial structural variation的研究论文。

    基于来自4个荷兰人群队列的9015个参与者的个体基因组和肠道微生物宏基因组数据,研究者进行了人类单核苷酸变异和肠道微生物基因组结构变异之间的大规模关联分析。随后发现,在分泌以 N-乙酰半乳糖胺(N-acetylgalactosamine,GalNAc)为末端的A血型抗原的个体中,肠道中的普拉梭菌(Faecalibacterium prausnitzii)更容易携带含有GalNAc代谢基因簇的基因组片段,这一特征是由人类 ABO 和 FUT2 基因型共同决定的。体外培养表明,只有携带 GalNAc代谢基因簇的普拉梭菌菌株,才可以在GalNAc作为唯一碳源的培养基中生长。有趣的是,在分离培养的一株普拉梭菌菌株中,含有GalNAc代谢基因簇的基因组片段发生了翻转,并导致该菌株失去GalNAc利用能力。研究者进一步假设,先前发现的与ABO基因型存在关联的肠道细菌也可能被同样的机制所影响。通过同源基因搜索及体外培养实验,发现铜绿假丝酵母菌(Collinsella aerofaciens)也拥有完整的GalNAc代谢通路,并可以在GalNAc作为唯一碳源的培养基中生长。

    研究团队进一步在整个肠道微生物群落中对GalNAc代谢基因进行定量分析,并将参与者根据ABO 和 FUT2 基因型分为有/无肠黏液游离A抗原两组,发现在肠黏液中存在游离A抗原的参与者肠道中,微生物GalNAc代谢基因丰度与肠道微生态多样性呈较强正相关。而在肠黏液中没有游离A抗原的参与者肠道中,该关联则相对较弱。并且,在肠黏液中存在游离A抗原的参与者中,微生物GalNAc代谢基因丰度与健康指数、体重指数、血糖、血脂等指标也存在较强关联,而这些关联在肠黏液中没有游离A抗原的参与者中则不存在,或者关联较弱。这一发现提示,肠道微生物与宿主健康的关联也同时受到宿主遗传背景的调控,同时也为个体化的靶向菌群干预提供了重要参考。

    综上所述,通过大规模关联分析,该研究揭示了人类“第一”和“第二”基因组之间的调节关系,为人体-共生微生物互作机制提供了重要的理论补充,并强调了微生物遗传多样性为主导的微生物组研究范式的可靠性。

相关报告
  • 《Science | 综述宿主调控微生物组》

    • 编译者:李康音
    • 发布时间:2024-07-30
    • 2024年7月19日,牛津大学Kevin R. Foster通讯在Science发表题为Host control of the microbiome: Mechanisms, evolution, and disease的文章,讨论了宿主调控其微生物群的机制。 多细胞生物与其相关微生物群之间的复杂关系长期以来一直被认为是维持健康的关键因素。微生物组由微生物群和宿主因子组成,在宿主生理的各个方面如免疫、营养和认知功能发挥着关键作用。以慢性竞争和快速进化为特征的微生物群的动态性质对宿主构成了重大挑战。为了应对这些挑战,宿主已经进化出一套控制机制,使他们能够塑造和操纵自己的微生物群,以最大限度地提高效益,同时最大限度地减少危害。 宿主控制特征包括影响微生物群的各种机制。这些包括免疫、屏障功能、生理稳态、转运和宿主行为。免疫,特别是脊椎动物的免疫系统,是已知的最复杂的宿主控制机制。它涉及天然免疫和适应性免疫,其中适应性免疫使宿主能够产生新的受体来识别和应对特定的微生物株。植物和动物共有的天然免疫利用模式识别受体来检测常见的微生物特征,从而驱动重塑微生物组并维持正常宿主-微生物组关系的反应。适应性免疫仅在有颌脊椎动物中发现,能学习并改变激活其受体的化学配体,从而对特定的微生物威胁做出量身定制的反应。 屏障功能是主机控制的另一个关键方面。屏障限制了微生物的定植和生长,有些屏障,如哺乳动物皮肤,完全阻断了通道,而另一些屏障,如粘膜上皮,则起到了选择性屏障的作用,限制了转运,但允许化学交换。粘液(mucus)是动物的特征,是容纳微生物群并实现气体交换的保护层。粘液还充当微生物的食物来源和附着位点,宿主可以利用它来塑造微生物群的组成。生理稳态在宿主控制中起着重要作用。宿主可以定义共生菌可以栖息的生态位,不同部位选择不同的微生物群。氧气控制在某些微生物组中尤为重要,促进了共生菌对复杂碳水化合物和其他底物的发酵。总肠道形态的进化也在生理控制中发挥作用,食草动物进化出了复杂的厌氧肠道,使植物材料能够发酵。 迁移(transit),即对微生物组的运动,是另一种宿主控制机制。平滑肌能够实现强有力的、有规律的蠕动收缩,这可以迅速清除导致疾病的共生菌。宿主行为也会影响微生物组。避免变质的食物可以降低摄入病原体的可能性,而对某些口味的偏好可以帮助宿主摄入有益的共生菌。此外,亲属之间特殊共生体的垂直传播也有助于稳定微生物群。 宿主控制机制以多种方式影响微生物组,可以改变存在的共生菌(partner choice,“伴侣选择”)或改变存在的寄生体的表型(partner manipulation ,“伴侣操纵”)。宿主可以通过调节宿主发育过程中的微生物组组装过程来影响共生菌的迁移,还可以通过限制问题共生菌的资源或为有益共生菌提供资源来影响已建立微生物的丰度。宿主可以直接影响驻留共生菌的行为,以增加它们从中获得的益处。最后,宿主可以塑造共生菌之间的相互作用,促进竞争,从而选择为宿主提供益处的生长旺盛的细菌。 共生进化和对抗适应(counteradaptation)对宿主来说是一把双刃剑。如果微生物的快速进化能够为微生物组内的有益性状产生自然选择,那么它就可以成为宿主控制的机会。然而,如果共生体进化使共生体能够逃避宿主的控制,也可能是一个问题。宿主控制机制通常针对微生物表型而不是基因型来限制反进化(counterevolution)。尽管如此,一些共生菌进化出了绕过宿主控制机制的方法,为宿主控制在共生菌进化中的作用提供了令人信服的证据。 疫苗接种提供了一种针对肠道微生物组中特定细菌的潜在策略。通过恢复肠道中的厌氧环境或调节关键营养素来增强宿主对共生体代谢的控制也可能是有益的。特别是随着年龄的增长,我们的微生物组变得更加多变和容易患病,促进健康粘液层和宿主上皮屏障完整性的策略具有明显的潜在健康益处。 总之,宿主控制机制是由自然选择形成的,以应对微生物组固有的(注意是inherent不是innate或inborn)多样性和可变性。了解这些机制对于理解微生物组和操纵它们以改善健康至关重要。
  • 《宿主遗传背景和肠道微生物群对果糖摄入的不同代谢反应有贡献》

    • 来源专题:食物与营养
    • 编译者:李晓妍
    • 发布时间:2020-12-11
    • 目前还不清楚高果糖摄入量是如何在基因不同的小鼠品系中诱导不同的代谢反应的。此研究的目标是调查肠道微生物群是否有助于果糖的不同代谢反应。 利用16S核糖体DNA测序分析了盲肠和粪便中的肠道菌群组成,并使用置换多变量方差分析比较不同菌株、不同处理和不同时间点的小鼠肠道菌群。微生物群丰度与代谢表型和下丘脑、肝脏和脂肪组织中宿主基因表达相关。为了测试肠道微生物群在确定果糖反应中的因果作用,我们将B6小鼠的粪便移植到DBA小鼠身上,反之亦然,进行了4周的粪便移植,以及灌胃抗生素治疗的患有阿克曼氏症的DBA小鼠9周,同时进行或不进行果糖治疗。 研究结果表明,不同小鼠菌株之间的微生物群组成差异是宿主对果糖代谢敏感的部分原因,而阿克曼菌是一种能够抵抗果糖诱导的代谢失调的关键细菌。