《特斯拉:预计今年年底前实现4680电池量产》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-08-06
  • 8月4日,特斯拉首席执行官马斯克在股东大会上介绍公司未来的扩产计划。

    马斯克表示,公司的目标是到2022年底达到每年200万辆的生产速度,并将继续建设工厂。他计划让特斯拉拥有10-12家巨型工厂。

    此外,马斯克预计特斯拉将在2022年年底前实现新型4680电池的“大规模生产”,这意味着搭载新型4680电池的特斯拉即将大规模出售。

    据特斯拉表示,4680电芯的单体能量提高5倍,整车续航里程可增加16%,电力相比有极耳电池提升了6倍,功率输出提升了6倍。并且马斯克表示4680电池共计节省了约86%的成本,而每kWh降低了69%的成本。

相关报告
  • 《今年年底前或将破300座!谁是加氢站发展No.1?》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-11-24
    • 加氢站在氢能源产业链中扮演着重要的角色,是连接制氢端和用氢端的桥梁。透过国内目前加氢站的分布与运营情况,从一定程度可以略窥国内氢能产业发展的一二。 据机构统计,截至2022年8月15日,国内共建成加氢站289座(不含已拆除站)。国内已开建或进入招标阶段的加氢站数量达到88座,预计2022年底国内总建成加氢站或将突破300座。 从建站年份来看,2021年国内建成加氢站122座,为历年来建站数量最多的年份,主要原因是受到去年的中石化发布“百站计划”、示范城市群政策即将落地、北京冬奥会氢能应用等利好因素影响,建站速度提升效果明显。2022年开年至11月,国内建成加氢站数量为40座,受公共安全事件影响,建站速度较去年明显放缓,预计2022年建站总数超越2021年的可能性不大。   分省份看,目前国内运行的289座加氢站分布在29个省级行政区,其中广东、山东、江苏分别以51座、29座、24座的建成量位列前三,TOP10省份加氢站建成数量达到215座,国内占比74.4%。从各省建站总加注能力来看,前三名分别是广东、山东和上海。加氢站的建设分布以及运营情况与各地方的氢源分布、氢能企业技术实力、地方财政实力、政策支持等是紧密相关的,珠三角、长三角、京津冀、环渤海等区域的氢能产业发展集聚程度相对较高。   从加氢站类型来看,自2019年中石化建成国内第一座油氢合建站并成为加氢站主要建设力量以来,国内新建加氢站中合建站比例逐年提升,2022年油氢合建站的建站比例约占六成,加氢、加油、加气及充电的综合能源供应站已成为加氢站的发展趋势。此外,进入2022年以来制氢加氢一体站建设数量明显增多,可缓解部分地区供氢紧张及氢价过高局面,有助于燃料电池汽车的加快推广。   目前国内“3+2”燃料电池汽车示范城市群的4年任务期,将推广氢车约5万辆,加上示范群外地区的氢车推广,据预测,到2025年国内加氢站建站数量或将突破1000座,未来5~10年,中国加氢站市场成长空间广阔。
  • 《固态电池再获重大突破!能量密度约为特斯拉4680电池两倍》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-10-17
    • 美国航空航天局(NASA)表示其研发的航空用固态电池取得了重大突破。 NASA在其官方网站介绍,NASA目前所研发成功的固态电池的能量密度达到了500Wh/kg,几乎是目前最好的电动汽车电池能量密度的两倍——特斯拉公司的4680锂电池的能量密度约为300Wh/kg。 2021年4月,NASA宣布其改进固态电池充电效率和安全性项目(e Solid-state Architecture Batteries for Enhanced Rechargeability and Safety,“SABERS”)部门将为电动飞机研发固态电池,相较于现有的液态电解质锂离子电池,其具有更高能量密度,电池体积更小,受到冲击后能够继续使用,风险也会更低。   据了解,NASA的固态电池为硫硒电池,其电解质材料利用廉价并易获得的硫,电池还利用了NASA此前研发的“多孔石墨烯”材料,导电性好,质量也较轻。由于固态锂电池没有液体电解液,因此降低了液体风险。此外,在电池的封装上,与普通锂离子电池单个封装不同,NASA的固态电池在单个外壳内将电芯堆叠在一起,这种方法使得电池重量减少了30%-40%。 “SABERS对电池的新材料进行了试验,这些材料在放电方面取得了显著进展。在过去的一年里,该团队成功地将电池的放电率提高了10倍,其后又提高了5倍,使研究人员距离为大型车辆提供动力的目标更近了一步。”NASA在其新闻稿中表示。 据介绍,电动飞机和NASA的先进空中机动项目将是新电池技术的主要受益者。 站上风口的固态电池 无独有偶,最近,另外一则关于固态电池的消息也引发了公众广泛关注。 据国内多家媒体报道,来自哈佛大学的华人教授李鑫与其学生叶露涵,研发的新型固态电池可重复使用1万次,充电速度最快3分钟,相较而言,目前最好的固态电池循环次数为2000—3000次。 两人于2021年5月发表在《自然》杂志上的相关论文介绍了这种新型固态电池的原理。研究者在论文中表示,其制备了一种具有界面稳定性的多层结构锂金属固态电池,从而实现了在超高电流密度下稳定循环且抑制枝晶渗透现象。 电池多层设计特点在于将不稳定的电解质夹在稳定的固态电解质之间,构成了“三明治”结构,且通过在不稳定的电解质层中实现裂纹良好的局部分解,抑制了任何锂枝晶的生长。   据上图所示,从左到右,“三明治”电池结构分布为锂金属负极→石墨→LPSCI→LGPS→LPSCI→单晶LiNi0.8Mn0.1Co0.1O2(镍锰钴811)正极。石墨介于锂金属负极和第一层固态电解质之间,主要用于隔热。据论文描述,夹在两边的第一层固态电解质为Li5.5PS4.5Cl1.5(LPSCI),特点在于对锂金属表现较为稳定,但容易发生锂枝晶穿透。它的存在能够稳定锂金属和石墨层的主要界面,并降低整体过电位。 夹在中间的第二层电解质为Li10Ge1P2S12(LGPS),对锂金属的稳定性较差,但不易发生锂枝晶穿透。中间的电解质可换成Li9.54Si1.74(P0.9Sb0.1)1.44S11.7Cl0.3(LSPS),也能获得类似的性能表现。 锂枝晶可以穿过石墨和第一层电解质,但到达第二层电解质时被拦截。通常的锂金属固态电池反复多次充放电,陶瓷颗粒中会频繁产生微米或亚微米级裂纹。裂纹一旦形成,锂枝晶穿透及短路现象就难以避免。“三明治”中间的这层固态电解质,让锂枝晶无法刺穿整个电池,从而避免了电池正负极发生短路。 不仅在安全性上得以提升,该技术以锂金属作为负极,LiNi0.8Mn0.1Co0.1O2作为正极构成展现了优异的循环性能。其在1.5C(0.64mAcm-2)和20C(8.6mAcm-2)的放电倍率条件下,循环2000次和10000次之后,容量保持率达到81.3%和82%。此外,电池的微米级正极材料能够实现110.6千瓦/千克的比功率和高达631.1瓦时/千克的比能量。 为了进一步推进对固态电池的研究,两名研究者已经成立了一家电池初创公司——Adden Energy,叶露涵担任首席技术官。据报道,今年,Adden Energy融资515万美元(约3570万元人民币)。 固态电池上车有何之难?   放眼全球,固态电池并不是一个全新的产物。传统的液态锂电池中,锂离子从正极到负极再到正极的运动过程中,电池完成充放电过程。固态电池的原理与之相同,只不过其电解质为固态。 早在2017年,总部设在加州安纳海姆的美国电动汽车公司Fisker发布了一项固态电池专利,充电1分钟,续航800公里。创始人Henrik Fisker表示,该公司的固态电池会在2023年量产,价格只有传统锂电池的三分之一。然而2021年,Henrik Fisker表示,已彻底放弃固态电池计划。 目前,全球范围内唯一实现动力固态电池商业化的是法国博洛雷集团(Bollore Group)。2011年10月,博洛雷集团开始在其自主研发的电动汽车“Bluecar”和电动巴士“Bluebus”上搭载由BatScap制造的固态电池,共投入2900辆电动车。但这款固态电池包的容量只有30KWh,能量密度仅有110Wh/kg。 在业内人士看来,固态锂电池的产业化,从技术层面来看,依然存在不小的挑战。 首先是固态电解质的离子电导率较低,特别是在低温环境中。其次是电极—电解质的固固界面处的界面电阻大。此外,固态电池采用的预锂化硅碳负极或未来的金属锂负极、高镍正极、固态电解质等新材料,完全颠覆当前的液态锂电池体系,生产成本远高于目前对应的材料,降本之路极其艰巨漫长。 据了解,目前固态电解质材料有三种主流体系:聚合物,例如将六氟磷酸锂掺杂到PEO中;氧化物,如锂钢锆氧化物(LLZO),NASICON等;和硫化物,如LPSX(X=Cl,Br,I)。 这三种材料路线中,聚合物体系的优点是高温离子电导率高,方便加工。但它在室温下离子电导率极低,制约了其发展。例如法国博洛雷牌固态电池就选用了聚合物体系,为了让电动车能在室温下正常工作,博洛雷集团特意为每辆车配载了加热器,发动前将电池系统升温至60℃至80℃。 而氧化物体系的优点是综合性能佳,但电极之间的界面电阻高于聚合物体系。其中薄膜型产品对工艺技术要求苛刻,成本与规模化生产难度很大。非薄膜型产品是目前最可靠的电动汽车电池解决方案。 硫化物体系的优点是离子电导率堪比液态电解质,这也是日韩公司丰田、本田、三星和中国电池巨头宁德时代选择的技术路线。但硫化物体系的开发进度处于最初级,生产环境限制和安全问题是最大的阻碍,无法商业化量产的风险也最高。 尽管难度重重,然而,在追求未来锂电池能量密度和安全性的道路上,固态电池仍然被寄予了厚望。据了解,目前,全球范围内约有50多家制造企业、初创公司和高校科研院所在致力于固态电池技术的推进。 欧美方面,宝马集团2022年向总部位于美国科罗拉多州的固态电池初创公司Solid Power投资了1.3亿美元,计划2025年前推出搭载固态电池的原型车,2030年前实现量产。 梅赛德斯-奔驰公司今年与美国马萨诸塞州固态电池创业公司Factorial Energy达成了战略协议,将对其投资约10亿美元金额支持固态电池研发,并于2022年开始测试原型车,五年内实现小批量产。 大众集团在2018年向位于美国硅谷的固态电池初创公司公司QuantumScape注资1亿美元,2020年又追加2亿美元。今年,大众集团宣布会在2025年在其电动车辆上使用固态电池。 日韩方面,丰田公司在2008年就与固态锂电池创企伊利卡(Ilika)展开了合作,其计划在2025年推出采用固态电池的混合动力汽车。三菱、日产、松下等企业也都加速了固态电池布局。据了解,目前丰田公司拥有固态电池全球相关专利1331项,居全球第一,松下272项位居第二。 国内方面,蔚来汽车在去年1月9日的Nio Day上发布锂能量密度为150Wh/kg的固态电池,其计划2022年第四季度实现量产。宁德时代方面此前表示,公司第一代固态锂电池的能量与目前的锂离子电池大致相同,预计2025年推出,第二代固态电池有望在2030年后推出。除此之外,孚能科技、蜂巢能源、赣锋锂业等国内企业也都宣布了固态电池的布局。