《超材料十大最新研究进展盘点》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-03-13
  • 什么是超材料

    "超材料(Metamaterial)"指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料。"超材料"是21世纪以来出现的一类新材料,其具备天然材料所不具备的特殊性质,而且这些性质主要来自人工的特殊结构。

    超材料的设计思想是新颖的,这一思想的基础是通过在多种物理结构上的设计来突破某些表观自然规律的限制,从而获得超常的材料功能。超材料的设计思想昭示人们可以在不违背基本的物理学规律的前提下,人工获得与自然界中的物质具有迥然不同的超常物理性质的"新物质",把功能材料的设计和开发带入一个崭新的天地 。

    典型的"超材料"有:"左手材料"、光子晶体、"超磁性材料" 、"金属水"。

    超材料的种类

    自我修复材料

    仿生塑料

    伊利诺伊大学的Scott White研发出了一种具备自我修复能力的仿生塑料。这种聚合物内嵌有一种由液体构成的"血管系统",当出现破损时,液体就可像血液一样渗出并结块。相比其他那些只能修复微小裂痕的材料,这种仿生塑料可以修复最大4毫米宽的裂缝。

    热电材料

    一家名为Alphabet Energy的公司开发出了一种热点发电机,它可被直接插入普通发电机的排气管,从而把废热转换成可用的电力。这种发电机使用了一种相对便宜和天然的热电材料,名为黝铜矿,据称可达到5-10%的能效。科学家们已经在研究能效更高的热电材料,名为方钴矿,一种含钴的矿物。

    热电材料目前已经开始了小规模的应用--比如在太空飞船上--但方钴矿具备廉价和能效高的特点,可以用来包裹汽车、冰箱或任何机器的排气管。

    钙钛矿

    除晶体硅外,钙钛矿也可可用来制作太阳能电池的替代材料。在2009年,使用钙钛矿制作的太阳能电池具备着3.8%的太阳能转化率。到了2014年,这一数字已经提升到了19.3%。相比传统晶体硅电池超过20%的能效。科学家认为,这种材料的性能依然有提升的可能。

    钙钛矿是由特定晶体结构所定义的一种材料类别,它们可以包含任意数量的元素,用在太阳能电池当中的一般是铅和锡。相比晶体硅,这些原材料要便宜得多,且能被喷涂在玻璃上,无需在清洁的房间当中精心组装。

    气凝胶

    气凝胶可由任意数量的物质所制成,包括二氧化硅、金属氧化物和石墨烯。由于空气占了绝大部分比重,气凝胶还是一种绝佳的绝缘体。它的结构也赋予其超高的强韧性。

    NASA的科学家已经在实验一种由聚合物所制成的柔性气凝胶,作为太空飞船在穿过大气层时的绝缘材料。

    Stanene

    导电率100%的材料

    和石墨烯一样,Stanene也是一种由单原子层所制作的材料。但由于使用了锡原子而非碳原子,这使其具备了石墨烯所无法实现的特性:100%的导电率。

    Stanene在2013年由斯坦福大学张首晟教授首次进行了理论化。预测Stanene这类材料的电子属性是张教授的实验室所擅长的领域之一,根据他们的模型,Stanene是一种拓扑绝缘体,也就是说,它的边缘是导体,而内部是绝缘体。这样一来,Stanene就能在室温下以零阻力导电。

    光操纵材料

    光操纵超材料的纳米结构能够以特定的方式对光线进行散射,它或许真的可以让物体隐形。根据制作方式和材料的不同,超材料还能散射微波、无线电波、和不太为人所知的T射线。实际上,任何一种电磁频谱都能被超材料所控制。

    超材料最新研究进展

    国外许多国家都在发展超材料,相比于不少国家相对分散的发展模式,中国在超材料领域的发展模式则更加聚焦和有力。我国已分别在863计划、973计划、国家自然科学基金、新材料重大专项等项目中对超材料研究予以立项支持。在电磁黑洞、超材料隐身技术介质基超材料以及声波负折射等基础研究方面,我国企业取得了多项原创性成果,并在世界超材料产业化竞争中占到先机。

    有调研公司预测,超材料全球市场规模在2010-2020年间将以高达41%的年复合增长率发展。可以预计,随着全球"工业4.0"进程持续深化、"智能+"应用领域不断扩大,一个可带动诸如高速列车、新型地面行进装备、航空航天、国防科技、地面智能机器人等领域的千亿规模的超材料产业集群正在崛起。

    利用驾驭电磁波的超材料技术来建造未来世界,正在成为全球科技创新的又一焦点。

    今天小编就汇总了,关于超材料十大最新研究进展,希望,给正在进行超材料研究的同学提供一些科研思路。

    十大最新研究进展

    折纸超材料的拓扑运动学 新一代“无耗能电子材料”

    “拓扑”(topology)这一概念的引入极大地推动了凝聚态物理学的飞速发展,诞生了诸如拓扑绝缘体(topological insulator)、外尔半金属(Weyl semimetal)等新一代“无能耗”电子材料。实际上,拓扑的概念广泛适用于各种非电子材料,并且可用于理解各种看似无关的现象。最近,受“折纸”(origami)这一儿时游戏的启发,来自康奈尔大学的Itai Cohen课题组、加州大学美熹德分校的Bin Liu、哈佛大学的JesseL. Silverberg等科研机构的研究人员将拓扑学原理应用于折纸力学超材料(origami-inspired mechanical metamaterials)中,并演示如何通过剪裁折痕配置空间(crease configuration-space)的拓扑来指导其运动学机理。具体来说,他们通过简单地改变折痕的角度,来修改配置空间拓扑结构,并驱动折纸结构从平稳和不断变形的状态转变为力学双稳态和刚性状态(bistable andrigid)。此外,他们还研究了如何使用拓扑脱节配置空间(disjointed configurationspace)来限制单个折叠片的局部可控变形。尽管,对折纸结构的分析通常依赖于其本构关系,但他们所提出的拓扑学抽象概念可用于深入分析、理解和设计更具普适意义的超材料。该研究工作发表在最近的《Nature Physics》中。

    文章链接:Bin Liu,Jesse L. Silverberg, Arthur A. Evans, Christian D. Santangelo, Robert J. Lang,Thomas C. Hull & Itai Cohen, Topological kinematics of origami metamaterials, Nature Physics (2018).DOI

    https://doi.org/10.1038/s41567-018-0150-8

    在任意k点具有折射率椭球面的新型超材料

    在介质中,电磁波的传播行为是由等频面(equifrequency surface)控制的。到目前为止,包括介质在内的普通材料和超材料的等频面(椭球体或双曲面体)总是以零k点为中心。然而,来自香港科技大学的C.T. Chan教授课题组、英国伦敦帝国理工学院的John B. Pendry教授以及苏州大学的Bo Hou教授提出了一种新型超材料——Wire Metamaterial,它拥有以任意非零k点为中心的多个折射率椭球(index ellipsoid)。它们在动量空间中的位置取决于一套相互贯穿金属支架(interpenetrating metallic scaffold)的连通性,而模式的群速度由结构几何细节决定。这种新型超材料的性质源自于全局的可连接性(global connectivity),因此可以在诸如负折射(negative refraction)、取向依赖的耦合效应以及无壁腔体(cavity withoutwalls)等应用中具有宽带性质,并且它们与带宽受限的普通共振超材料具有本质上的差异。研究人员还进行了微波实验,来验证该超材料体系的宽谱负群速度、取向依赖的耦合效应。相关研究发表在近期的《Nature Communications》上。

    文章链接:Wen-Jie Chen,Bo Hou, Zhao-Qing Zhang, John B. Pendry & C. T. Chan, Metamaterials with index ellipsoids at arbitrary k-points, Nature Communications 9, Article number: 2086 (2018).

    腔量子声学器件在多模强耦合系统中的研究

    量子比特(qubit)不但是实现量子计算的基础,也是研究量子力学本质问题的有力工具。近年来,在腔量子电动力学系统基础上发展起来的电路量子电动力学系统(circuit quantumelectrodynamics system)是一种全新的量子比特,由于在退相干时间等参数上远远超出之前的超导量子比特,因此受到了极大的关注。来自科罗拉多大学Boulder分校的研究人员展示了一种电路量子电动力学系统的声学类比体系,该系统利用声学性质在色散区间中实现了多模强耦合(strong multimode coupling),同时抑制自发辐射至非限制模式(unconfined mode)。具体而言,该声学体系包含一个与磁通可调transmon相耦合的300μm长的声表面波谐振器(surface acoustic wave resonator)。对于某些特定的模式,量子比特腔(qubit-cavity)耦合达到6.5 MHz,超过了腔损耗率(200 kHz)、qubit线宽(1.1 MHz)和腔自由光谱范围(4.8 MHz),表明器件处于强耦合状态和强多模态区域。正如对声子自发辐射的预期,随着量子比特从腔受限模式中解谐,可以观察到量子比特线宽强烈地依赖于声子的频率;并且基于研究结果,获得了抑制这种发射速率的工作频率。该工作发表在近期的《Physical Review Letters》上。

    文章链接:Bradley A.Moores, Lucas R. Sletten, Jeremie J. Viennot, and K. W. Lehnert, Cavity QuantumAcoustic Device in the Multimode Strong Coupling Regime, Phys. Rev. Lett. 120,227701 – Published 30 May 2018.

    二维声子腔中的量子效应研究

    随着体系特征尺寸的减小,相关物理机制的描述将从经典物理变为量子物理。近年来,纳米技术的进步使得我们能够在更小的尺度上对电子、光子、声子的量子行为开展研究。最近,来自莫斯科物理技术学院、MISiS、莫斯科国立师范大学、伦敦大学皇家霍洛威学院等机构组成的研究团队在声表面波谐振器(surface acousticwave resonator)中,通过与人造超导原子的相互作用而产生的真空拉比模式分裂(Rabi mode splitting)来实现quantum regime。由于声表面波器件由大量较窄的金属条带(metal strip)组成,因此在物理上和实验技术上都具有具有一定的挑战性。在低于20mK的极低温度下,研究人员观测到了透射图谱的反交叉型特征峰,表明该体系是一个典型的两能级系统,并且与理论计算保持一致。这项工作为利用声子实现量子光学现象的类比铺平了道路,并可用于片上量子电子学器件的应用研究。该研究工作发表在近期的《Physical Review Letters》上。

    文章链接:Aleksey N.Bolgar, Julia I. Zotova, Daniil D. Kirichenko, Ilia S. Besedin, Aleksander V.Semenov, Rais S. Shaikhaidarov, and Oleg V. Astafiev, Quantum Regime of a Two-Dimensional Phonon Cavity, Phys. Rev. Lett. 120, 223603 – Published 31 May2018.

    复杂等离子体场的宽带与动态构建

    相干表面等离子激元极化基元(surface plasmon polariton, SPP)场的剪裁设计(tailor),为许多纳米光子应用带来了全新的机遇。在以往的研究中,基于光斑系综(an ensemble of spots)已经实现了聚焦SPP斑点的扫描和SPP场分布的设计。然而,由于SPP通常是被高亮度、相干的激光所激发,因此相邻光斑之间的干扰是不可避免的,并且会影响整体SPP场分布。近日,来自深圳大学的袁小聪教授、林佼教授领衔的研究团队,联合澳大利亚拉筹伯大学、皇家墨尔本理工大学和墨尔本大学的研究人员,通过考虑将相干场作为一个整体而非分立的光斑,报道了一个用以生成可剪裁二维SPP场分布的可重构(reconfigurable)和波长无关的研究平台。并且,这种技术可以实现单片SPP场相位梯度方向(即面内能量流的方向)的动态调控;其所需的相位信息是由入射激光束携带的,不需要引入与波长相关的纳米结构,因而可以用于各种波长的调控。基于该研究思路,可以拓展到许多不同的应用领域:例如,强度分布和能量流的有效控制将有可能实现利用等离子镊子对金属纳米粒子的动态控制;SPP的宽带激发能力可用于不同颜色SPP的产生、高速面内通信以及大容量数据存储。这种新方法揭示了2D相干场分布的固有约束条件,并且同样适用于声表面波等其他二维表面受限波动系统,在相关领域的结构设计与研究方面具有重要的指导意义。相关研究发表在近期的《Science Advances》上。

    文章链接:Shibiao Wei,Guangyuan Si, Michael Malek, Stuart K. Earl, Luping Du, Shan Shan Kou, XiaocongYuan, and Jiao Lin, Toward broadband, dynamic structuring of a complex plasmonic field, Science Advances 01 Jun 2018: Vol. 4, no. 6, eaao0533 DOI:10.1126/sciadv.aao0533

    具有全波操作的混合共振记忆超材料

    “记忆超材料”(Memory metamaterials)是一类能够实现对电磁响应持久性调制(persistent tuning)的新兴人工微结构材料,通常由人工构成的谐振元件与自然记忆材料耦合而成,受电场、光线和热量等外部刺激的控制。尽管目前已经有多种自然界的记忆材料得到了应用,但仍缺少人们对基于铁磁材料(ferromagnetic materials)的记忆超材料研究。

    近日,来自韩国西江大学Kiejin Lee领衔的研究小组报道了基于“超材料-铁磁”混合共振(hybrid resonance)系统、在微波频段应用的记忆超材料。该研究验证了混合共振能够以输入微波信号的频率和振幅为调制函数,并且可以可逆地调谐(tuned reversibly)。这种持久性混合共振调谐的基本原理是磁畴结构能够基于微波输入信号进行自适应的结构调制。相关研究发表在近期的《Advanced Functional Materials》上。

    文章链接:Hanju Lee, Shant Arakelyan, Barry Friedman, Kiejin Lee, Hybrid Resonance Memory Metamaterial with Full‐Wave Operation, First published: 18 May 2018https://doi.org/10.1002/adfm.201800760.

    基于纳米级热辐射的“热二极管”

    “热整流器”(Thermal rectifier),通常也被称为“热二极管”(thermal diode),是一种与电子二极管热类似、实现热流非对称传输的热逻辑器件。尽管基于热对流效应(convection)和热传导的热二极管概念早已被提出,但是基于热辐射(thermal radiation)的固态热二极管却很少受到关注。

    最近,来自密歇根大学、德国奥登堡大学、法国泰勒斯研究与技术研究院的科研团队向我们展示了掺杂Si与氧化钒VO2表面之间的纳米级热辐射整流效应。具体来说,当温度梯度的方向发生反转时,VO2的“金属-绝缘体转变”能够使Si和VO2之间热辐射效率出现巨大差异,从而导致热流大小因温度梯度方向的改变而产生非对称传输。进一步研究表明,这种整流效应在纳米级的表面分离时会得到增强,并且在~140nm的间隙和70K温差下达到超过50%的最大整流系数(rectification coefficient)。理论模型表明,这种高整流系数是由于金属态的VO2与Si表面具有较宽的辐射光谱,而其与绝缘态的VO2只有较窄的辐射光谱和热传输。这项工作成功证明了基于近场热辐射效应实现热力学整流现象的可行性,为基于纳米辐射的信息处理设备和热管理方法的构建点明了关键的方法和部件。相关研究发表在近期的《ACS Nano》上。

    文章链接:Anthony Fiorino, Dakotah Thompson, Linxiao Zhu, Rohith Mittapally, Svend-Age Biehs, Odile Bezencenet, Nadia El-Bondry, Shailendra Bansropun, Philippe Ben-Abdallah, Edgar Meyhofer , and Pramod Reddy,A Thermal Diode Based on Nanoscale Thermal Radiation, ACS Nano, Article ASAP, DOI: 10.1021/acsnano.8b01645.

    用于超宽带雷达截面降低和漫散射的均匀分层编码超材料

    雷达散射截面(Radar Cross section, RCS)是雷达隐身技术中最关键的概念,它代表了目标在雷达波照射下所产生回波强度的物理量:雷达截面积越小,雷达对目标的信号特征就越小,探测距离也越短。为了减少结构的RCS,人们通常在物体表面设计雷达吸收超材料(radar absorbing metamaterials)或是采用180°反相干涉,来消减反射波的强度来增强对雷达微波的吸收,然而这两种方法都需要在较窄的带宽内工作。因此,近年来人们提出一种平面棋盘状超表面结构(planar chessboard-like metasurface)来实现宽带的RCS减弱,特别是基于编码超表面(coding metasurface)或数字超表面(digital metasurface)的概念已经达到了较宽的工作带宽。最近,来自中国传媒大学的李增瑞教授课题组、内布拉斯加大学林肯分校的Yaoqing (Lamar) Yang教授、电磁散射重点实验室的殷红成研究员和北京交通大学的王均宏教授提出了一种新型的非均匀分层编码超材料瓦片(metamaterial tile),可以用来实现超宽带的RCS降低和电磁波漫散射(diffuse scattering)。

    超材料瓦片由两种不同层厚的方形环基元(unit cell)组成,两个基元之间在一个超宽频段范围内实现了180°(±37°)的反射相位差;由于基元之间的相位抵消,超材料瓦具有偏离法线方向的四个强波瓣(strong lobes)的散射图案。超材料瓦片及其90度旋转可以被编码为覆盖物体的'0'和'1'元素,并且可以通过优化相位分布的手段来实现漫散射模式,从而实现单体和双静态RCS的同时减少。超材料瓦片在法向入射时可实现从6.2GHz至25.7GHz宽谱范围内的-10dB RCS降低,比例带宽(ratio bandwidth)为4.15:1,该测量结果和模拟结果非常吻合,展现出超材料瓦片在电磁隐身和其他微波应用的巨大潜力。该研究结果发表在最近的《Scientific Reports》上。

    文章链接:Jianxun Su, Huan He, Zengrui Li, Yaoqing (Lamar) Yang, Hongcheng Yin & Junhong Wang, Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering, Scientific Reports volume 8, Article number: 8182 (2018). doi:10.1038/s41598-018-26386-5.

    由3D打印PETG预制棒制成的中红外中空内芯微结构光纤

    中红外(Mid-infrared)光纤长期以来以其在安全、生物和化学传感等方面的广泛应用,引起了科研人员的极大兴趣。传统意义上,这类光纤的制备研究主要集中在中红外波段吸收率低的材料,如硫族化合物,然而这些材料往往难以控制并且通常含有高毒性元素。最近,来自英国南安普顿大学和巴西坎皮纳斯州立大学的研究人员向我们演示了在中红外波段具有光学导波特性的聚对苯二甲酸乙二醇酯(PETG)空心光纤(HCF),通过使用商业的3D打印技术制造具有特定结构的塑料预制棒,然后使用常规的光纤拉伸装置进行拉制,成功制备出外径为466μm、中空直径为225μm的PETG中空内芯微结构光纤,在3.5-5μm波长范围内实现了良好的光学导波效果。相关研究发表在最新一期的《Scientific Reports》上。

    文章链接:Wanvisa Talataisong, Rand Ismaeel, Thiago H. R. Marques, Seyedmohammad Abokhamis Mousavi, Martynas Beresna, M. A. Gouveia, Seyed Reza Sandoghchi, Timothy Lee, Cristiano M. B. Cordeiro & Gilberto Brambilla,Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform, Scientific Reportsvolume 8, Article number: 8113 (2018). doi:10.1038/s41598-018-26561-8.

    高性能超薄手性超材料

    手性超材料(Chiral Metamaterial)是一种能够基于光波或声波的手性特征,在更大的自由度上对其进行任意调控的超构材料。其中,主动式的光学手性超材料将有可能应用于新型光学传感器、调制器和光开关等。最近,来自德克萨斯大学奥斯汀分校的Yuebing Zheng、Mingsong Wang以及中山大学的JianwenDong研究团队研制出一种高性能的超薄手性超材料,实现了对光学手性特征的高度可调。他们将两层相同的金纳米孔阵列薄膜相互堆叠并以介质层隔开,形成二维moiré条纹,通过理论模拟和实验证实了近场耦合对手性光的影响。更进一步,他们使用丝素蛋白薄膜(silk fibroin)作为间隔层,通过特定溶剂对丝素蛋白薄膜的溶胀特性调控,实现了近场耦合以及手性光学特征的主动调节。令人印象深刻的是,在单个超薄(1/5波长厚度)结构中即可实现了超过半高宽波长范围的光谱偏移。最后,他们将该超材料作为超灵敏传感器,应用于检测低至200 ppm的痕量溶剂杂质,具有优于105 nm/RIU的超高灵敏度以及品质因子。

    文章链接:Zilong Wu,Xiaodong Chen, Mingsong Wang, Jianwen Dong, and Yuebing Zheng, High-PerformanceUltrathin Active Chiral Metamaterials, ACS Nano (Article ASAP), DOI:10.1021/acsnano.8b02566.

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=448084
相关报告
  • 《【盘点】近期Nature十大研究亮点》

    • 来源专题:广东省干细胞与组织工程技术路线图信息服务平台
    • 编译者:mall
    • 发布时间:2018-09-21
    • Nature杂志推荐的2015年8月11日 ~ 2015年9月10日最受关注的十项研究进展介绍如下。 1.真核生物中原核生物基因的来源 多年来,人们一直假设,真核生物基因组中所见的原核生物基因,一定是在首先原核细胞器的内共生,然后最后稳定存在细胞中的。但最近的证据表明,在真核生物之间,以及在原核生物和真核生物之间,也存在实质性的水平基因转移。对细菌、古菌和真核生物基因组所做的这项分析,没有发现连续横向基因转移,对真核基因组的演化具有可以检测累积影响。相反,这项研究认为,真核生物是在广泛的差异基因(differential gene)丢失之后,在相应于线粒体和质体起源的两次“演化涌入”事件中,获得其原核生物基因的。这一历史性事件,在复杂细胞的核基因组中留下了内共生的重大印记。 doi: 10.1038/nature14963  原文:Endosymbiotic origin and differential loss of eukaryotic genes 2.癌症中细胞压力和自噬过程之间的联系 已有的研究表明,包括胰腺导管腺癌(PDA)在内的各种不同癌症,其癌症细胞的生存都依赖于高水平的自噬过程。自噬过程是正常细胞中自行降解过程,其涉及到的营养清除和质量控制活动的途径都高度保守。在这项研究中,Rushika Perera等人描述了细胞压力和自噬过程之间,在胰腺癌中,导致细胞代谢被改变的一个新的关联。他们发现,MiT/TFE家族转录因子的异常表达和组成性激发,通过人类PDA标本和细胞系,可以大大增强自噬-溶酶体功能介导代谢相关的基因表达重编程。这些发现说明,溶酶体调控是癌细胞中营养利用和能量平衡的一个关键节点。 doi: 10.1038/nature14587  原文:Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism 3.对中国碳排放量数据的向下修正 中国排放大量人为产生的碳,但其碳排放量估计值有很大不确定性。这项研究中,通过升级和协调的能量消耗估计、熟料生产数据以及两个关于中国煤炭相关的碳排放因子的数据集,研究人员发现,在2000到2012年间,中国国内能源消耗总量比中国国家统计局给出的数据高大约10%。然而,这个时期中国碳排放量数据比起政府间气候变化专门委员会(Intergovernmental Panel on Climate Change)的数据平均低了45%。中和这些数据,研究人员估计,在2013年,中国化石燃料和水泥工业带来的二氧化碳排放量在2.49亿吨,比之前其他组织给出的数据低了14%。总共算起来,这个研究表明,整个2000年到2013年期间,以前关于总二氧化碳排放量的数据可能高估了2.9亿吨。 doi: 10.1038/nature14677 原文:Reduced carbon emission estimates from fossil fuel combustion and cement production in China 4.“不纯洁的”金刚石中 Nature在封面图片上所示的,是一块有包膜的“不纯”金刚石。这个金刚石,是当一个含微包裹体的纤维膜,生长在一块单晶清透金刚石上时生成的。在地球表面附近发现的大多数金刚石,大都是在古老大陆最底部深度超过150公里处形成的。因此,“不纯”金刚石中封存的化学杂质,含有关于地球深处无法接触到宝贵地化信息。Yaakov Weiss及同事,在Nature杂志上发表了一组地球化学数据。数据来自加拿大西北地区Ekati金刚石矿的一组11块金刚石中的化学信息。这些数据包含清晰的化学演化趋势,它表明,高咸度溶液参与了含硅、含碳酸盐的深层地幔熔融体的形成过程。含盐流体的化学性质和主体金刚石形成的时间说明,北美地下的一个消减板块是这些流体的来源,也说明,在消减、地幔交代变质和富含流体的金刚石形成之间,存在密切联系。这一新模型为了解地幔流体组成范围的效应提供了一个背景,这种效应会在全球范围内改变深层岩石圈,并在金刚石形成中起关键作用。 doi: 10.1038/nature14857  原文:Highly saline fluids from a subducting slab as the source for fluid-rich diamonds 5.GPCR激活性变构的一个普遍机制 “G蛋白耦合受体”(GPCRs)是充当一系列细胞外信号的传感器的膜蛋白。它们通过“异三聚G蛋白” (能结合鸟嘌呤核苷酸的蛋白,充当细胞内分子开关)发挥功能,以变构方式将后者激活来触发GDP释放。有数百种人类GPCRs作用于16种不同的 “Gα蛋白”之上。在这研究文章中,Madan Babu及同事试图弄清,是否存在一个主管Gα激活的普遍性变构机制。他们发现的确有这样一个机制,即不同GPCRs 通过一个高度保守的机制,与Gα蛋白发生相互作用并将其激活。这也许可解释为什么GPCR–Gα系统发生了迅速分化、同时又保留了其变构性质。 doi: 10.1038/nature14663  原文:Universal allosteric mechanism for Gα activation by GPCRs 6.科学家发现神经退化的一个新机制 衰竭性疾病“肌萎缩性脊髓侧索硬化症”(ALS)是一种罕见的神经性疾病,其最常见病因是C9orf72基因中的“六核苷酸重复扩增”GGGGCC (G4C2) 。 本期Nature上的两项研究,采用对比法得出一个可能引起这种疾病的一种家族性形式的分子机制。通过对表达30 G4C2 重复片段的果蝇,进行基于候选目标的基因筛选,或对表达含8、28 或58 G4C2重复片段的转录体的果蝇进行无偏基因筛选,这两个研究小组试图寻找增强或抑制该疾病表型的基因。 Zhang等人识别出了编码RanGAP (核质运输的一个关键调控因子)的基因,而Freibaum等人识别出了编码核孔及核质运输机相关的基因。两篇论文都显示了,表达 G4C2重复片段的果蝇细胞中,以及来自ALS患者的源自iPSC的神经元中,核质运输功能存在缺陷。Zhang等人发现,这些缺陷可以通过以“G-四联体”为目标的反义寡核苷酸或小分子来补救。 doi: 10.1038/nature14973  原文1:The C9orf72 repeat expansion disrupts nucleocytoplasmic transport doi:10.1038/nature14974 原文2:GGGGCC repeat expansion in C9orf72compromises nucleocytoplasmic transport 7.能量输入让金属玻璃恢复“青春” 当一个玻璃系统慢慢向平衡态松弛的时候,我们就说它在 “老化”,其很多性质会发生相应变化。通过能量注入,使该系统从平衡态又回到原来的状态,比如说通过加热它或以机械方式对其施压,就可以使它恢复“青春”。现在,Sergey Ketov等人发现,这样的青春焕发,可以在相对温和的条件下做到。仅仅通过在一个远远低于玻璃转变温度的温度下,对玻璃(在本例中采用金属玻璃)进行热循环,就可以在很大程度上让其恢复青春。作者将这一现象归因于玻璃态中内在结构异质性的效应,这种异质性效应,会随着温度的变化而转变成局部化的内部应变性,不同区域会发生不同程度的膨胀和收缩。 doi: 10.1038/nature14674 原文:Rejuvenation of metallic glasses by non-affine thermal strain 8.中央静脉附件出现的新的肝细胞 新的肝细胞,作为体内平衡程序的一部分,是怎样在成年肝脏中出现的仍不清楚。Roel Nusse及同事利用复杂细胞标记方法,对这一课题进行了研究。他们在中央静脉附近识别出一类增殖的肝细胞,它们是双倍体(成熟肝细胞是多倍体),表达一个肝脏祖细胞标记。这些细胞,对由来自中央静脉的相邻内皮细胞提供的Wnt信号,可以做出反应,成为能够取代维持肝脏平衡所需的所有肝细胞类型的多倍体肝细胞。 doi: 10.1038/nature14863 原文:Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver 9.用纳米晶体进行“取代掺杂” 下图中所示的,为掺杂一个半导体超晶格而又不会破坏有序阵列的金纳米晶体图像。掺杂(广泛用于半导体、稀磁材料和磷)是将外来原子引入一种主体材料内、以便改善或生成新的电子性能、磁性能和光性能的一个过程。Christopher Murray及同事将“取代掺杂”的概念引入到了纳米晶体超晶格中,在其中采用的是人造原子(均匀的纳米晶体)而不是真正的原子。他们显示,金纳米晶体会随机吸收到一个半导体(CdSe或PbSe)纳米晶体超晶格中,在其中一个纳米晶体可被具有同样大小但不同组成的另一个纳米晶体取代。这样生成的材料的导电性由受掺杂剂的密度和分布控制的金属渗透通道来调制。自聚集方式的采用意味着,这一新方法应可以广泛适用于一系列不同材料和组成。Alternative outcomes from superlattice doping. doi: 10.1038/nature14872  原文:Substitutional doping in nanocrystal superlattices 10.X射线衍射揭示翻转酶催化机制 脂质穿过膜双层的转位(被称为翻转)是维持脂质非对称性所必需的,也是信号传导和囊泡形成等过程所要求的。嵌入在膜中的脂质(含有大型极性头基)的翻转是缓慢的,从能量角度来讲也是不利的。这一过程由翻转酶催化,其机制目前尚不知道。本文作者获得了ABC transporter PglK的X-射线晶体结构,该物质在Campylobacter jejuni中、在向内和向外的状态下帮助“脂联寡糖”(LLO)的翻转。这些结构和随后的生物化学实验支持一个不同寻常的机制,在其中LLO的 “聚戊烯基”尾巴仍然部分嵌入在脂质双层中,“焦磷酸盐-寡糖”头基在ATP被水解之后翻转到了向外的空腔内。 doi: 10.1038/nature14953 原文:Structure and mechanism of an active lipid-linked oligosaccharide flippase
  • 《Science盘点: 4月材料领域重大进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 发布时间:2017-05-08
    • Science盘点: 4月材料领域重大进展. 1、Science: 利用太阳光从空气中收集水资源的金属-有机框架器件 美国加州大学伯克利分校的Omar M. Yaghi教授和美国麻省理工学院的Evelyn N. Wang学者(共同通讯作者)等人报道了该课题组在金属-有机框架(MOF)用于水收集领域的成果。他们设计了介孔MOF-801 [Zr6O4(OH)4(富马酸)6] ,通过表征后证明它可以在潮湿空气中接受1 kW m-2强度的太阳光照射下捕获水。相对湿度为20%时,每公斤MOF可实现在没有外界能量供应时,每天收集2.8升水的效果。 文献链接:Water harvesting from air with metal-organic frameworks powered by natural sunlight( Science  2017, DOI: 10.1126/science.aam8743 ) 2、Science: 史上最低密度MOF诞生! 美国西北大学Omar K. Farha (通讯作者)等人报道了一例由简单结构单元构建的结构复杂的基于铀的介孔MOF,即NU-1301 。结构包含10个铀节点和7个羧酸盐配体;在173.3埃的立方晶胞中包含816个铀节点和816个有机配体,这是在非生物材料中迄今发现的最大晶胞。立方体组成五角和六边的柱状次级结构,然后是四面体和金刚石四级拓扑结构共同构成史无前例的复杂结构。得到的三级结构的空穴内径达到5.0nm和6.2nm,是迄今为止报道的最低密度的MOF。 文献链接:Bottom-up construction of a superstructure in a porous uranium-organic crystal (Science. 2017, 10.1126/science.aam7851) 3、Science: 超快速瞬态吸收显微镜监测混合钙钛矿中热载流子的远程输运 美国普渡大学的黄立白教授(通讯作者)等人报道了关于捕获混合钙钛矿中热载流子的最新研究成果。该研究团队利用具有50 nm空间精度和300 fs时间分辨率的超快速瞬态吸收显微镜(TAM)直接观察CH3NH3PbI3薄膜中热载流子的迁移,发现并揭示了热载流子三种不同的运输方式,包括初始热载流子的准运输,用于受保护长寿命热载流子的非平衡运输,以及用于冷却载流子的扩散运输。研究者所观察到的准三重运输与剩余动能相关,该剩余动能导致热载流子具有长达230 nm的运输距离,并且可以克服晶界的阻碍进行运输。在达到扩散运输极限之前,非平衡运输能够持续数十皮秒,运输距离约600 nm。这些结果表明基于混合钙钛矿形成的热载流子装置具有潜在的应用价值。 文献链接: Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy(Science, 2017, DOI: 10.1126/science.aam7744) 4、Science: 由液相剥离纳米片网络制作的全印刷薄膜晶体管 爱尔兰都柏林圣三一学院的Jonathan N. Coleman和Toby Hallam(共同通讯)等人研究了基于液相剥离法制备的纳米片,并用其制作了全印刷的薄膜晶体管。实验中利用电解液栅极证明了全印刷、垂直堆叠的晶体管是可行的,这些晶体管是由石墨烯源极、漏极和栅电极构成,还包括过渡金属硫族化物沟道以及氮化硼隔离层,上述材料都是由纳米片网络构成的。纳米片网络表现出了接近600的开/关率,其跨导超过5mS,迁移率大于0.1 cm2V-1s-1。其开电流会随网络厚度和体积电容按比例变化。相比其他具有类似迁移率的器件,较大的电容和受阻碍的转换速度使得这些器件可以在相对较低的驱动电压下传输更高的电流。 文献链接:All-printed thin-film transistors fromnetworks of liquid-exfoliated nanosheets(Science, 2017, DOI: 10.1126/science.aal4062) 5、Science: 通过二氧杂硼烷复分解反应对普通热塑性塑料改性制备高性能塑料vitrimers 巴黎市工业物理化学学校的Renaud Nicolaÿ和Ludwik Leibler(共同通讯作者)等人报道了通过二氧杂硼烷的复分解反应,利用不同聚合物如聚甲基丙烯酸甲酯、聚苯乙烯和高密度聚乙烯等聚合物制备Vitrimers,并且发现其反应快速。尽管Vitrimers已经永久性交联但仍可以通过挤出或注射成型反复加工。它们具有优异的耐化学性和尺寸稳定性,可以有效地组装。该方法适用于由碳-碳单键构成骨架的聚合物。 文献链接:High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis(Science,2017,DOI:10.1126/science.aah5281) 6、Science: 跨越60年的难题-日本科学家成功合成超难结构有机碳纳米带 日本名古屋大学Yasutomo Segawa教授和Kenichiro Itami教授(共同通讯作者)等人报道了该研究团队合成碳纳米带的最新研究成果,该成果属于日本科学技术署( JST-ERATO )的Itami分子纳米碳项目。该科研团队首先通过迭代Witting反应合成环戊烯异构体CNT带段(文中标记为1),然后再由镍介导的芳基-芳基偶联反应来合成包含完全融合的边缘共享苯环的闭环的碳纳米管。通过X射线晶体学证实该合成物具有圆柱形带结构,并且通过紫外-可见吸收光谱、荧光光谱和拉曼光谱研究以及理论计算阐明了其基本光电特性。同时,研究者提出该分子具有用作制备结构定义良好的碳纳米管的潜在可能。 文献链接: Synthesis of a carbon nanobelt (Science, 2017, DOI: 10.1126/science.aam8158) 7、Science: 基于碳烯-金属-酰胺的高效发光二极管 剑桥大学的Dan Credgington、东安格利亚大学的Manfred Bochmann和东芬兰大学的Mikko Linnolahti(共同通讯)等人研究了基于碳烯-金属-酰胺的高效发光二极管。介绍了一种新型的线性供体-桥-受体发光分子,并可以基于液相法制作在高亮度下内量子效率接近100%的LEDs,其性能的关键在于对于三重态的快速、有效利用。结合时间分辨光谱法得知,发光过程是在到单重态反转系间窜越后,通过在环境温度中350ns内发生的三重态产生的。实验中发现分子几何形态中存在的单重-三重态能隙接近于零,这使得快速互换成为可能。计算结果表明交换能量可以由关于桥的供体和受体部分的相对转动所调控。不同于其他低交换能量系统,其本身的振子强度是由单重-三重态简并点所保持的。 文献链接:High-performance light-emitting diodes based on carbene-metal-amides(Science, 2017, DOI: 10.1126/science.aah4345) 8、Science: 溶液中纳米粒子胶体氧化过程的3D定量形态演化表征 美国天普大学的孙玉刚教授,阿贡国家实验室的Zuo Xiaobing和Subramanian K. R. S. Sankaranarayanan(共同通讯作者)等人利用X射线衍射和分子动力学计算模拟去跟踪Fe纳米粒子胶体在氧化过程中亚纳米级分辨率下的组成和3D形态演化,实现对纳米粒子化学转化的实时分析。原位观察于大尺度反应分子动力学模拟结合,揭示了固体金属纳米颗粒通过纳米尺度的Kirkendall效应到中空金属氧化物纳米壳的转变细节。 文献链接:Quantitative 3D evolution of colloidal nanoparticle oxidation in solution(Science,2017, DOI: 10.1126/science.aaf6792) 9、Science: 新型高性能、安全的可充电Ni-3D Zn电池! 美国海军研究实验室Debra R. Rolison(通讯作者)等人将Zn制备成三维海绵,发现整块的Zn海绵正极可在Ni-Zn碱性电池中循环上千次,而不会发生钝化或形成大尺度的枝晶。并证实了3D形貌的Zn在三个使用领域可极大的提高Ni-Zn碱性电池的性能:(1)原电池中>90%的理论放电深度(DODZn);(2)在与锂离子相称的比能量下,在40% DODZn达到>100次的高倍率循环;(3)快速启动-停止运行周期需要大量能量供给的混合动力设备。 文献链接:Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion(Science,2017,DOI:10.1126/science.aak9991) 10、Science: 胶体溶液法制备La掺杂BaSnO3电极 韩国化学技术研究所的Jun Hong Noh和 Sang Il Seok(共同通讯作者)报道了利用过氧化物胶体溶液在非常温和的条件下(300℃一下)制备出LBSO。La掺杂的BaSnO3(LBSO)可很好的替代介孔TiO2作为钙钛矿太阳能电池的电子传输层。制备的LBSO用于钙钛矿太阳能电池,呈现出稳定的功率转化效率,达到21.2%,1000小时光照射后仍能保持最初性能的93%。 文献链接:Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells(Science,2017,DOI:10.1126/science.aam6620) 11、Science: Cd2Re2O7中电子向列相的对称破坏 加州理工学院D. Hsieh(通讯作者)等人利用光学各向异性的二次谐波空间分辨谱在烧绿石Cd2Re2O7中揭示了多极向列相。与早先发现的电子向列相相似,当保留平移不变,这个多极相自发的破坏了旋转对称性。通过检测多级向列相有序参数的临界行为,表面在Cd2Re2O7中,200K附近驱动热相变,包括二次对称破坏晶格扭曲。 文献链接:A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7(Science,2017,DOI:10.1126/science.aad1188) 12、Science: TiO2纳米晶间的范德华吸引力 西北太平洋国家实验室的Kevin M. Rosso和Chongmin Wang以及匹兹堡大学的Scott X. Mao(共同通讯作者)等人根据金红石TiO2相互取向和表面水合作用,测试了分子间的范德华吸引力。十几个纳米的距离,相互间的吸引力很弱并没有表现出与方位或表面水合作用相关的影响。当距离接近一个水合层时,吸引力与方位有着很强的关系,并随着中间水密度的增加而降低。 文献链接:Direction-specific van der Waals attraction between rutile TiO2 nanocrystals(Science,2017,DOI:10.1126/science.aah6902) 文章来源:材料人网