《规模制备石墨烯技术取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-12-05
  • 12月3日,记者从石墨烯规模制备新技术媒体发布会上获悉,针对石墨稀规模制备技术现有不足,北京化工大学教授、博士生导师毋伟带领研究团队成功研发出高效、低成本、高品质石墨烯规模化生产新技术,并于日前与北京中元龙港矿业科技有限公司合作建立中试生产线,实现技术转化。

    据介绍,该技术在物理液相剥离法的基础上创新手段,经中试验证,可高效率、低成本、无污染地生产高纯度石墨烯。经检测,利用该技术生产的石墨烯产品质量优质,平均层数7层以下,片的尺寸大于3微米。

    石墨烯作为一种新材料,是构成石墨、碳纳米管、富勒烯等碳材料的基本结构单元,具有强度最高、韧性最高、透光率最高、重量最轻、电子迁移率最快、导电性最佳的优异特性,借助“石墨烯+”的平台支撑,可以为一大批传统材料的性能提升与应用拓展提供有力支撑,同时衍生出一系列性能优异的新一代功能元器件,在锂离子电池、太阳能电池、超级电容器、传感器、生物医药、复合材料、环保、柔性显示、半导体行业等领域均有良好的应用前景。

    毋伟表示,实现石墨稀的高性能低成本且稳定性高规模化制备是其应用的前提和保障,更是当前学界关注和研究的焦点。现有的石墨烯制备方法很多,如气相合成法、氧化还原法及液相剥离法等。其中液相剥离法被认为是高性能石墨烯规模化制备的重要方法之一,但目前制备效率和产率仍较低,因此,石墨稀的高效率低成本规模化制备技术成为产业重要需求。

    针对这一问题,毋伟带领研究团队在以液相剥离法制备石墨烯的基础上,创新性地提出用石墨衍生物作为分散剂,采用高速水相剪切法来解决该过程效率低及规模制备难以放大等问题,建成了年产一吨的中试生产线,所得产品理化性能良好。经生产线验证,该工艺有以下几个特点:绿色环保,以水为溶剂,在常压下进行,不加表面活性剂等有机成分,对环境无害;成本较低,每公斤石墨烯成本在500元以内;产品质量好,由于产品主要是剥离法制得,缺陷少,层数低,多在七层以内,片的大小在3~5微米之间,未加入表面活性剂对产品无污染,纯度高,产品的导电率接近50000S/m,达到国际领先水平;所用重要设备都来自市场定型设备,所使用的添加剂也可从市场购买,原料来源广,可膨或高纯鳞片石墨及人工石墨均可,具有很好的产业化前景。

    据成果转化合作方、北京中元龙港矿业科技有限公司董事长龙珍介绍,公司专注于天然鳞片石墨产品的全过程开发。今年1月,公司与北京化工大学签署合作协议,致力于使用物理法制备石墨烯的深层研发。6月,双方共同成立“北京化工大学—北京中元龙港矿业科技有限公司研发中心”,致力于石墨烯下游产品研发生产。

    记者了解到,目前,北京中元龙港矿业科技有限公司已经建成年产1吨的中试生产线,计划从今年6月开始在内蒙古兴和县建设规模化生产基地。

    毋伟表示,尽管学界对于石墨烯的研究日益深入,但石墨烯行业仍处于初级阶段。随着制备方法取得重大进展,石墨烯材料的大规模生产已经实现,通过石墨化学或物理加工,石墨烯粉末或悬浮液年产量可达数十万吨,但完整的石墨烯材料产业链仍非常重要,石墨烯大量应用及性能的充分挖掘有待突破。在成果转化后,基础研究与应用研究之间通常会有一个良性循环,石墨烯和相关材料的产业发展将进一步助推石墨稀基础研究的迅速进步。

相关报告
  • 《大连化学物理研究所电化学剥离法制备氟掺杂石墨烯及其微型超级电容器研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-07-04
    •   近日,我所二维材料与能源器件创新特区研究组(DNL21T3)吴忠帅研究员与德国马普高分子研究所Klaus Müllen教授和德累斯顿工业大学冯新亮教授合作,采用电化学剥离方法一步高效制备出氟掺杂石墨烯,并以此开发出高比能全固态平面微型超级电容器。相关研究成果发表在《美国化学会志》(Journal of the American Chemical Society)上。   近年来,随着可穿戴、便携式电子设备及微机电系统(如微型机器人、微型传感器)朝着轻薄短小、多功能集成方向的快速发展,亟需开发与其相配套的高能量密度、柔性化、微型化储能器件。   最近,该研究团队发展了一种绿色环保的电化学剥离法一步制备出氟掺杂石墨烯。该方法以石墨为原料,在中性含氟的水系电解液中,采用电化学方法一步实现了石墨的高效剥离和氟掺杂,以此可宏量制备出氟掺杂石墨烯。科研人员通过掩膜板协助过滤法得到氟掺杂石墨烯微电极,以高电压离子液体凝胶为电解质,成功组装出高比能全固态微型超级电容器,能量密度高达56mWh/cm3。同时,该微型超级电容器具有优异的柔性和循环稳定性,在弯曲的状态下5000次循环后容量保持率为93%。此外,该微型储能器件还表现出良好的模块化集成能力,可有效调控输出工作电压和容量。该工作为高效制备掺杂石墨烯和高性能微型超级电容器提供了新策略。   上述工作得到国家自然科学基金、国家重点研发计划、国家青年相关人才计划等项目的资助。
  • 《Nature子刊重磅:我国石墨烯纳米电子器件取得新进展!》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-10
    • 电子元器件的多功能化是应用电子技术发展的重要趋势,因而非硅基材料越来越受到研究人员的关注。2016年,国家纳米科学中心鄢勇课题组与韩国蔚山科技大学的Bartosz Grzybowski教授等人合作,采用金属纳米颗粒构建了双层结构的二极管、电阻等电子元器件,并与各种金纳米颗粒构建的传感器件集成,实现了环境信号的采集、处理和报告,相关成果以封面文章的形式发表在《自然:纳米技术》(Nature Nanotech., 2016, 11, 603-608)上。其中,最重要的二极管的设计受到了传统半导体pn结的启发,将两层带有相反电荷的金纳米颗粒薄膜面对面接触,可迁移的对离子在熵驱动下由于浓度梯度相互扩散,从而在界面处建立内建电场,调控电子的不对称输运。 最近,鄢勇课题组将类似的设计理念推广到无能隙的石墨烯材料,采用带相反电荷的氧化石墨烯作为活性层,高导电率的单壁碳纳米管作为电极,实现了全碳材料pn二极管的构筑。该二极管具有一定的透光性,可以集成实现逻辑输出,并且可以制备在柔性基底上等优点,相关成果以“All carbon materials pn diode”为题发表在《自然:通讯》(Nature Commun., 2018, 9, 3750)上。 另外,通过器件结构的创新,实现了单种带电金属纳米颗粒二极管的构建。即采用碳纳米管/石墨烯复合薄膜与金薄膜作为不对称电极对,带电金纳米颗粒作为活性层,利用两个电极特征电容值的差别,创造偏压下的不对称电荷分布,从而实现整流效应。同时,该课题组将其集成到矿石收音机的检波电路中,基于自制的发射、传送装置,实现了音频信号的解调。 相关成果将以“Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves” 为题发表在Science Advances (2018, 4, eaau3546)上。这些工作为新型电子器件的设计、开发以及电子器件的多功能化提供了一些思路,也丰富了电子器件材料的可选性。 以上工作得到了国家自然科学基金(21571039)和中国科学院经费的支持。