《中国科学院大连化物所锂硫二次电池技术取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2018-01-15
  • 近日,中国科学院大连化物所陈剑研究员带领团队在锂硫二次电池技术研发中取得新进展。研制的能量型锂硫电池的比能量经第三方按照国军标要求的安全测试,从过去的520 Wh/kg、570 Wh/kg到如今609Wh/kg,再次刷新二次电池比能量在同领域的领先位置。电池的环境适应性优异,-20℃的放电比能量达到400Wh/kg,并可于-60℃极寒环境工作,表现出显著优于锂离子电池的低温性能。功率型锂硫电池的持续放电倍率大于4C,脉冲可达10C。

    目前,陈剑团队与中科派思储能技术有限公司合作生产的锂硫电池组,完成与太阳能无人机的全系统地面联试,取得良好效果,通过用户验收。

    陈剑说:“中科派思储能技术有限公司建成了6700余平现代化锂硫电池生产车间和自动生产线,产能300万Ah/年,是我国第一家专门从事锂硫电池生产和销售的公司,也是中国科学院纳米先导专项锂硫电池产业化基地”。公司在大连化物所科研团队的鼎力支持下,取得了锂硫电池高载量碳硫复合材料的设计及制备技术、高硫载量高利用率硫正极的高精度制备技术、适配电解质技术、金属锂负极自动叠片技术以及锂硫电池化成和分容技术等多项核心技术。

相关报告
  • 《大连化物所锂硫电池电解液材料研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-22
    • 近日,大连化物所储能技术研究部张华民研究员、李先锋研究员、张洪章副研究员团队提出一种含大体积阳离子的锂硫电池电解液,并证实其能够有效提高多硫化物稳定性,延长锂硫电池的循环寿命。该相关研究成果发表在Advanced Functional Materials(DOI:10.1002/adfm.201704987)上。 锂硫电池具有能量密度高、成本低、环境友好的优势,是国际储能领域的研究热点之一。然而,由于锂硫电池存在多硫化锂飞梭、多硫化锂歧化、电解液分解、金属锂枝晶粉化等问题,导致其循环寿命短,尚未满足大规模产业化发展的要求。该研究团队针对多硫化锂歧化的问题,基于“软硬酸碱理论”,通过在电解液引入大体积阳离子来络合多硫根离子,有效提高了多硫化锂在电解液中的稳定性。采用该电解液组装的5000mAh锂硫电池器件的比能量可达300Wh/kg,且稳定循环100次以上,容量保持率约70%。该工作为提高锂硫电池的循环寿命提供了新思路和新策略。 上述研究工作得到国家自然科学基金委、教育部能源材料化学协同创新中心(iChEM)、中国科学院青年创新促进会等项目的资助。
  • 《苏州纳米所锂硫电池研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-08
    • 随着社会和科技的发展,人类对电化学储能技术的需求日益增大,研究人员都在寻找具有更高比能量的下一代二次电池。锂硫电池以硫为正极活性物质,基于硫与锂之间的可逆电化学反应来实现能量储存和释放,其理论质量比能量可达到 2600 Wh/kg ,是目前锂离子电池的 3-5 倍,有望被应用于动力电池、便携式电子产品等领域,但 内部的多硫化物穿梭效应造成循环寿命短的问题将限制其将来的实际应用 。   近日,中国科学院苏州纳米所陈立桅研究员课题组在锂硫电池正极材料的研究中取得新进展。研究人员展示了一种不同于常规的硫正极材料包裹的新策略。常规的包覆策略是在硫正极材料颗粒外制备一个包覆层,然后将此材料制备成正极并与电解液等搭配组装成电池。常规包覆策略存在一个难以克服的矛盾:如果材料颗粒在组装电池之前已覆有完美的包覆层,则电解液将难以扩散进材料内部,从而导致内部的硫无法参与充放电过程(图 1b );而如果材料未被完美包覆,则充放电过程中的中间产物多硫化物仍将从正极材料中扩散出来,造成穿梭效应(图 1c )。在此新工作中,研究人员预先在碳 / 硫复合颗粒上生长一层不完美的含孔的预包覆层(在材料制备过程中完成),后将由此材料制备而成的正极与含有特殊添加剂的电解液一起组装成电池。在电解液浸润碳 / 硫颗粒的同时,添加剂将与预包覆层发生反应,从而在颗粒外部原位形成致密的包覆层(图 1d )。    这种原位包覆策略避免了常规手段的弊端,既实现了电解液与材料的浸润,同时又限制了多硫化物的扩散。研究结果表明,采用此新包覆策略的锂硫电池的库仑效率和循环寿命得到显著提升,。其组装的电池在高放电倍率的条件下呈现出极好的循环稳定性 : 在 1C 的电流密度下循环 1000 次,单次循环的容量衰减率仅为 0.030% 。相关结果已发表在 Nature Communications ,8,479,2017.   该项工作得到了中国科学院先导专项、科技部重点研发计划、国家自然科学基金的经费支持。