《昆明植物所在附生植物的景天酸代谢多组学研究中获进展》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-03-08
  •   附生植物是热带、亚热带森林生态系统的重要组成部分,对热带、亚热带森林生态系统的生物多样性和服务功能的形成与维持特别是养分贮存和水分保持具有重要作用。附生植物存在C3和景天酸代谢(crassulacean acid metabolism,CAM)等光合类型,其中CAM是植物高效利用水分的策略之一。兰科是种子植物中物种多样性和生态适应性最丰富的类群之一。该科70%左右的物种为附生植物,其中附生型CAM植物占所有已知CAM植物的60%左右。在生理上,CAM植物通常表现为夜间气孔打开、固定二氧化碳(CO2),白天气孔关闭、在细胞内释放CO2,从而最大限度的减少蒸腾作用,维持植物水分含量。然而,关于附生植物CAM光合作用的遗传基础和分子基础以及不同分子层级间协同调控机制存在较多未知。

      2月21日,中国科学院昆明植物研究所种质资源库研究员李德铢、朱安丹和正高级工程师杨俊波等,在Plant Communications上,发表了题为High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes的研究论文。该研究通过解析兰科附生型CAM植物硬叶兰(Cymbidium mannii)的高质量基因组,结合高分辨率的转录组学、蛋白质组学和代谢组学数据,剖析了附生植物CAM光合作用的遗传与分子调控机理。

      科研人员获得了硬叶兰高质量的基因组(contig N50为22.7 Mb)。基因组大小为2.88 Gb(图1),其中82.8%为重复序列,这是硬叶兰基因组较大的主要原因。重复序列中转座元件(TE)占比较大,其插入时间与兰属物种的分化时间一致(图2),因而研究推测TE的爆发可能与兰属物种的快速分化有关。

      研究表明,硬叶兰中较多代谢物呈现昼夜节律性振荡的变化模式,特别是CAM相关的代谢产物如苹果酸、延胡索酸、丙酮酸等,呈现出与C3植物不同的昼夜特征,反映了附生CAM植物代谢物积累的昼夜节律性(图3)。

      研究通过全基因组水平、昼夜多时间点的转录组和蛋白组分析发现,硬叶兰的昼夜节律性产物存在相位偏移(phase shift)的现象(图4),表明其光合代谢类型受到多层次的分子调控。CAM核心基因的表达及转录后调控分析确定了固定碳源的重要候选基因(βCA和PPC),并表明了附生型的硬叶兰与地生型景天科植物如伽蓝菜、白景天等类似,即利用NADP-ME和PPDK途径进行脱羧反应(图5)。

      由于生物钟相关基因和顺式调控元件在调节CAM通路中起到重要作用,该研究进一步探讨了关键的生物钟基因表达模式并预测了可能的调控元件(图6),这为后续更深入的功能验证奠定了基础。研究工作得到中国科学院战略性先导科技专项(B类)、云南省创新团队和国家科技基础资源调查专项等的支持。


  • 原文来源:https://www.cas.cn/syky/202302/t20230222_4875624.shtml
相关报告
  • 《昆明植物所在附生植物的景天酸代谢多组学研究中取得新进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-25
    • 附生植物是热带、亚热带森林生态系统的重要组成部分,对其生物多样性和服务功能的形成与维持、特别是养分贮存和水分保持有重要作用。附生植物中存在C3和景天酸代谢(crassulacean acid metabolism,CAM)等光合类型,其中CAM也是植物高效利用水分的一种策略。兰科是种子植物中物种多样性和生态适应性最为丰富的类群之一,该科70%左右的物种为附生植物,其中附生型CAM植物占所有已知CAM植物的60%左右。在生理上,CAM植物通常表现为夜间气孔打开、固定二氧化碳(CO2),白天气孔关闭、在细胞内释放CO2,从而最大限度的减少蒸腾作用,维持植物水分含量。然而,我们对附生植物CAM光合作用的遗传和分子基础以及不同分子层级间协同调控机制的理解仍存在很大程度的未知。   2月21日,中国科学院昆明植物研究所种质资源库李德铢、朱安丹和杨俊波等团队合作在Plant Communications期刊上发表题为High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes的研究论文。该研究通过解析兰科附生型CAM植物硬叶兰(Cymbidium mannii)的高质量基因组,结合高分辨率的转录组学、蛋白质组学和代谢组学数据,对附生植物CAM光合作用的遗传与分子调控机理进行了解析。   研究人员获得了硬叶兰高质量的基因组(contig N50为22.7 Mb),基因组大小为2.88 Gb(图1),其中82.8%为重复序列,这也是硬叶兰基因组较大的主要原因。重复序列中转座元件(TE)占比较大,其插入时间也与兰属物种的分化时间一致(图2),因此推测TE的爆发可能与兰属物种的快速分化有关。       研究表明,硬叶兰中很多代谢物呈现昼夜节律性振荡的变化模式,特别是CAM相关的代谢产物,如苹果酸、延胡索酸、丙酮酸等,呈现出与C3植物不同的昼夜特征,反映了附生CAM植物代谢物积累的昼夜节律性(图3)。        通过全基因组水平、昼夜多时间点的转录组和蛋白组分析发现,硬叶兰的昼夜节律性产物存在相位偏移(phase shift)的现象(图4),表明其光合代谢类型受到多层次的分子调控。CAM核心基因的表达及转录后调控分析不仅确定了固定碳源的重要候选基因(βCA和PPC),也表明了附生型的硬叶兰与地生型景天科植物伽蓝菜、白景天等类似,利用NADP-ME和PPDK途径进行脱羧反应(图5)。        由于生物钟相关基因和顺式调控元件在调节CAM通路中起着至关重要的作用,该研究还探讨了关键的生物钟基因表达模式并预测了可能的调控元件(图6),为后续更深入的功能验证奠定了基础。        中国科学院昆明植物研究所樊维姝博士和贺正山博士为共同第一作者,李德铢研究员、朱安丹研究员和杨俊波正高级工程师为共同通讯作者。昆明植物所张石宝研究员、种质资源库、种质保藏中心和分子生物学实验中心等也参与了本项目。该项目得到了中国科学院B类先导专项(XDB31000000)、云南省创新团队(202105AE160012)和国家科技基础资源调查专项(2021FY100200)等项目的资助。
  • 《昆明植物所在超高多样化类群的系统演化方面获进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-05-08
    •  快速辐射类群因在年轻的生物多样性热点地区的进化、适应和环境变迁研究中的潜在价值而备受关注,也是解决生命之树问题的最大挑战之一。紫堇属Corydalis是罂粟科中超高多样化的属(约530种),主要分布于北温带,以青藏高原-横断山区为主要辐射分化中心。长期以来,关于紫堇属的系统发育研究往往基于个别叶绿体基因片段和少数类群取样,未能很好解决本属内的组间系统发育关系,且所提出的亚属级和组级分类系统存在争议。此外,紫堇属多数物种具有重要的药用价值和观赏价值。关于该属植物分类、分子系统学等的研究,将为有效保护及合理开发利用属内优质种质资源提供科学依据。   近日,《植物学报(英文版)》在线发表了中国科学院昆明植物所孙航研究团队撰写的题为An updated classification for the hyper-diverse genus Corydalis (Papaveraceae: Fumarioideae) based on phylogenomic and morphological evidence的研究论文。该研究对紫堇属首次进行全球广泛取样并测序,获得280个代表类群的叶绿体基因组序列和271个代表类群的低拷贝核基因数据集,涵盖紫堇属当前已定义的所有组和“系”。基于质体基因组和核基因两套数据,该研究构建了紫堇属迄今最全面和最稳固的系统发育树,探讨了属下拓扑结构的核质不一致情况,阐明了属内的组间系统关系。结果表明,过去界定的42个组和5个独立的“系”中,仅25个组和1个“系”为单系,且多为物种数较少的组。祖先性状重建分析表明,生活型、是否具主根、是否具短囊状距和果实类型相关的性状较为稳定,可用于属下分类鉴定。基于组级水平的完整系统发育关系,结合形态学证据、地理分布和祖先特征的重建,研究人员提出了全新的紫堇属组级分类系统,包括4个亚属(1个新亚属被建立)和39个组,并全面梳理了各组异名。其中,16个组的范围被重新界定,恢复了1个组,新建立了6个组。该研究是以扎实野外考察和标本查阅为基础,结合多组学数据以及形态-地理-性状等多维证据对紫堇属进行全面地系统发育分析,重新认知了属内系统关系,提高了对于该属性状进化的认知,为紫堇属深入的分类学、多样性进化以及资源利用和保护等的研究奠定了坚实基础。   研究工作得到第二次青藏高原综合科学考察研究、中国科学院战略性先导科技专项(A类)和国家自然科学基金重点项目等的支持。瑞典乌普萨拉大学、美国康奈尔大学、华中师范大学的科研人员参与研究。   孙航团队致力于泛第三极植物多样性起源、演变和进化适应机制研究,以宏观生物学研究为基础,以植物类群的起源发生和分布格局形成为核心,以物种多样性演化和适应机制为切入点,多学科交叉,宏微观结合,探讨高山植物多样性在时间和空间上的进化过程和生存机制及其在全球植物多样性形成演变中的作用,并为探究泛第三极环境演变提供生物学证据,例如,提出东亚植物区系形成新观点,聚焦紫堇属、风毛菊属、葱属等超高多样化类群开展从系统发育、地理格局形成到伪装色彩进化以及适应性进化基因组机理全链条系统研究。