《JCB:揭示驱动蛋白帮助HIV病毒逃避巨噬细胞的破坏》

  • 来源专题:艾滋病防治
  • 编译者: 李越
  • 发布时间:2012-11-06
  • Macrophages are long-lived target cells for HIV infection and are considered viral reservoirs. HIV assembly in macrophages occurs in virus-containing compartments (VCCs) in which virions accumulate and are stored. The regulation of the trafficking and release of these VCCs remains unknown. Using high resolution light and electron microscopy of HIV-1–infected primary human macrophages, we show that the spatial distribution of VCCs depended on the microtubule network and that VCC-limiting membrane was closely associated with KIF3A+ microtubules. Silencing KIF3A strongly decreased virus release from HIV-1–infected macrophages, leading to VCC accumulation intracellularly. Time-lapse microscopy further suggested that VCCs and associated KIF3A move together along microtubules. Importantly, KIF3A does not play a role in HIV release from T cells that do not possess VCCs. These results reveal that HIV-1 requires the molecular motor KIF3 to complete its cycle in primary macrophages. Targeting this step may lead to novel strategies to eliminate this viral reservoir.
  • 原文来源:http://www.bioon.com/biology/sars/531739.shtml
相关报告
  • 《PNAS:揭示HIV成功逃避ZAP蛋白捕捉之谜》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-17
    • 人类进化出了抵抗试图感染我们身体的病毒的动态防御机制,即专门识别、捕获和破坏病毒试图导入到我们细胞中的遗传物质的蛋白。 在一项新的研究中,来自美国密歇根大学和洛克菲勒大学的研究人员如今揭示了这些蛋白中的一种称为ZAP的蛋白(zinc-finger antiviral protein, 锌指抗病毒蛋白)如何捕捉外来入侵者,而且还揭示了包括人类免疫缺陷病毒(HIV)在内的一些病毒如何逃避这种捕捉。揭示让这种蛋白在某些情况下成为一种有效的抗病毒试剂的确切机制是在开发更好地攻击试图逃避它的病毒的方法的目标上迈出关键的第一步。相关研究结果近期发表在PNAS期刊上,论文标题为“Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences”。 与ZAP蛋白结合在一起的RNA示意图。ZAP结合到病毒RNA中的胞嘧啶(C)/鸟嘌呤(G)二核苷酸(CG二核苷酸)上,以阻止病毒复制和扩散感染。这种特定的胞嘧啶和鸟嘌呤位点用黄色高亮显示。图片来自Rajani Aroroa, U-M Life Sciences Institute。 ZAP蛋白是由细胞产生的,用以限制病毒复制和传播感染。当细胞检测到病毒时,编码ZAP的基因就会开启并产生更多的ZAP蛋白。ZAP蛋白随后将病毒的RNA与细胞自己的RNA区分开来,从而使得病毒RNA随后遭受破坏。 洛克菲勒大学先前的一项研究已表明,ZAP仅捕获含有CG二核苷酸的RNA序列。人类的RNA几乎没有CG二核苷酸,HIV RNA经过进化后也模拟这种特征。 论文共同第一作者、密歇根大学生命科学研究所研究员Jennifer Meagher说,“这项研究的主要动机是‘HIV如何逃避这种抗病毒蛋白的捕获?’鉴于我们是结构生物学者,我们想要确定ZAP如何‘看见’CG二核苷酸,以及在结构上如何结合含有CG二核苷酸的RNA。” 通过使用经过基因改造后含有额外CG序列的病毒RNA片段,Meagher及其在密歇根大学的同事们解析出ZAP蛋白与这种RNA片段结合在一起时的三维结构,从而揭示出让这种蛋白具有如此高选择性的机制。 这些研究人员发现ZAP仅在这种蛋白的4个他们认为是潜在结合位点的“锌指”结构之一上与这种病毒RNA结合。他们进一步证实即使对这种结合位点进行微小的改变(仅改变单个原子),也会破坏ZAP的结合能力。 在细胞中开展实验时,论文共同通讯作者、洛克菲勒大学逆转录病毒实验室主任Paul Bieniasz及其同事们在改变ZAP的组成时也取得了类似的结果。他们构建出在受到正常HIV或富含CG序列的HIV变体感染的细胞中表达的ZAP突变体。 这些突变的ZAP蛋白不太能够识别细胞中病毒RNA的富含CG的区域。它们还显示出对CG二核苷酸含量不高的RNA区域的结合增加,这表明这些突变会破坏ZAP区分病毒RNA与人类RNA的能力。 Bieniasz说:“自然选择似乎已经以根据CG二核苷酸含量优化区分非自我RNA和自我RNA的方式塑造了ZAP蛋白结构。但是,成功存活下来的病毒通常在这种分子军备竞赛中领先一步。” 论文共同通讯作者、密歇根大学医学院生物化学教授教授Janet Smith说,“这是细胞最终如何降解病毒RNA这个复杂故事的关键的第一步。如今,我们知道这一步骤是如何执行的,以及为何它无法有效地捕捉缺乏CG序列的HIV和其他病毒。”
  • 《Cell Rep:揭示结核杆菌在巨噬细胞中如何逃避死亡》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-16
    • 结核分枝杆菌(Mycobacterium tuberculosis),俗称结核杆菌,导致一种被称作肺结核的破坏性疾病。它每年杀死140万人并且导致1000万例新增的病例。 当肺部的巨噬细胞吞噬入侵的结核分枝杆菌时,它们原本应当会破坏这种病原菌,但是这种病原菌进化出逃避这种破坏并继续生长的能力。 3年前,美国阿拉巴马大学伯明翰分校的Michael Niederweis博士及其团队有史以来发现了结核分枝杆菌的首个毒素(Nature Structural & Molecular Biology, 2015 September, doi:10.1038/nsmb.3064)。与几乎所有其他的病原菌产生的毒素不同的是,这种毒素并不导致疾病或死亡。他们将这种毒素称为结核坏死性毒素(tuberculosis necrotizing toxin, TNT),并证实TNT属于一类新的之前未被识别的存在于600多种细菌和真菌物种中的毒素。他们还发现TNT酶促水解NAD+---所有活细胞中的一种至关重要的辅酶,而且巨噬细胞中的NAD +缺乏在一定程度上会导致巨噬细胞经历坏死性细胞死亡,从而释放出结核分枝杆菌来感染更多的细胞。这种坏死性细胞死亡使得巨噬细胞偏离它们破坏被吞噬的细菌的正常途径---在巨噬细胞内对被吞噬的细菌进行溶酶体降解,从而触发巨噬细胞经历程序性细胞死亡(或者说细胞凋亡)。 图片来自图片来自Cell Reports, doi:10.1016/j.celrep.2018.06.042。 在一项新的研究中,Niederweis团队展示了TNT如何帮助结核分枝杆菌赢得与人体免疫细胞之间的战斗,从而控制被感染的巨噬细胞的命运,这是决定着这种感染结果的关键性战斗。相关研究结果发表在2018年7月10日的Cell Reports期刊上,论文标题为“NAD+ Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis”。 巨噬细胞的基因编码的蛋白组成一种导致程序性坏死(也被称作坏死性凋亡)的经典通路,这个通路能够被免疫系统激活。Niederweis团队发现,由TNT水解导致的NAD+损耗激活这个通路中的两个关键的调节物:RIPK3和MLKL,从而绕过这个通路中的两个上游组分。与此同时,作为细胞能量工厂的线粒体发生去极化,并且为细胞提供大部分化学能的ATP分子的合成受到损害。 令人吃惊的是,当Niederweis团队通过抑制NAD+补救途径中的一种酶来降低未被感染的巨噬细胞中的NAD +水平时,通过RIPK3和MLKL通路发生的坏死也被激活。这表明仅是NAD +损耗也足以诱导坏死性凋亡(necroptosis),即便当TNT和结核分枝杆菌不存在时,也是如此。 这一发现提出了一个问题:给被结核分枝杆菌感染的巨噬细胞补充NAD+能够减轻由TNT引起的细胞毒性吗?Niederweis团队发现,往被感染的巨噬细胞的体外培养物中加入烟酰胺(NAD+前体分子)可将巨噬细胞的活力增加三倍。类似地,在被感染的巨噬细胞中加入保护线粒体的化合物---通过增加线粒体数量从而增加线粒体呼吸率或者通过阻止线粒体通透性形成--也会增加线粒体膜电位和细胞活力三到四倍。再者,所有的这些处理方法都会限制结核分枝杆菌在巨噬细胞内的生长。 Niederweis说,“我们发现NAD+耗损触发程序性细胞死亡来杀死被结核分枝杆菌感染的巨噬细胞,这揭示出开发针对肺结核的宿主靶向疗法的策略。” 这可能包括使用被美国FDA批准的药物来降低坏死性凋亡,为患者补充NAD+,或者使用促进线粒体功能的试剂,以及将这些方法与用于治疗肺结核的抗菌药物组合使用。这些针对患者的策略也可能适用于治疗导致NAD +损耗的其他细菌和真菌病原体感染。