《研究综述:2019年12月6日》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-12-10
  • 欢迎来到2019年12月6日的研究综述,这是布罗德研究所的科学家和他们的合作者发表的最新研究的一个重复快照。

    寻找增强剂

    虽然我们体内的每个细胞都含有相同的基因序列,但增强子控制着基因在不同细胞类型中的表达方式,例如,确保肝细胞不会失控并开始启动肾脏基因。然而,确定和预测哪些增强子调节哪些基因的能力仍然难以捉摸。查理·富尔科、约瑟夫·纳赛尔、杰西·恩格雷茨、研究所所长兼创始主任埃里克·兰德以及来自布罗德和其他地方的同事在《自然·遗传学》杂志上描述了一种可以确定哪些增强子调节哪些基因的实验技术,以及一种预测基因组中增强子-基因连接的模型。由于先前的研究已经将增强子突变与疾病联系起来,这些新工具将对了解人类健康非常重要。

    细菌测试进入噬菌体- r阶段

    一种快速诊断细菌感染的方法可以帮助病人更快地康复,并防止耐药微生物的传播。每年有3.5万美国人死于耐药微生物。Roby Bhattacharyya是传染病和微生物组项目(IDMP)的核心成员,他和同事们开发了一种新的诊断方法,称为GoPhAST-R,它结合了基因型和表型测试来确定细菌的抗生素敏感性。GoPhAST-R寻找抗生素诱导的基因表达的模式,并识别关键的耐药基因以区分易感和耐药菌株。在《自然医学》杂志上,该方法可以在不到4小时内提供94%到99%的准确率,相比之下,使用标准的临床实验室方法需要28到40小时。

    当质量不够大的时候

    关于转录因子(TFs)如何与基因启动子一起控制基因表达、细胞表型和细胞状态的规则仍然模糊不清,部分原因是规模问题。在《自然生物技术》,卡尔•德波尔核心研究所细胞天文台特拉维夫Regev董事成员和卡拉曼和他的同事发布了巨大平行记者化验(GPRA):机器学习方法,合并与实验室系统,衡量TFs与超过1亿randomly-synthesized基因启动子序列在酵母基因表达的影响。GPRA揭示了tf -启动子结合的关键特征,并为研究基因变异如何影响基因表达和疾病风险提供了一个创建复杂、全面模型的机会。

    将数据和谐地结合在一起

    为了充分利用现有的单细胞rna测序(scRNA-seq)研究,研究人员需要能够收集来自各种组织、数据源、测序平台等的数据。Ilya Korsunsky,医学和人口遗传学(MPG)项目的研究所成员Soumya Raychaudhuri,和他的同事开发了Harmony,一种允许科学家整合来自多个数据集的scRNAseq数据的算法。在Nature方法中,他们展示了Harmony的能力:1)处理大型数据集;2)在集成数据中识别宽粒度和细粒度的细胞群;3)处理复杂实验中生成的数据;4)处理来自多个实验平台的数据。Harmony的R包可以在GitHub上找到。

    心的读者

    潜在的朊病毒疾病治疗的目的是降低大脑中的朊病毒蛋白(PrP),但目前测量脑脊液(CSF)中PrP的方法没有捕获蛋白质片段或不同的构象。Eric Vallabh Minikel、Eric Kuhn、Sonia Vallabh、研究所科学家和蛋白质组学平台主任Steven Carr及其同事开发了一种基于多重反应监测的质谱仪方法,可以精确测量人类和其他模型物种的PrP肽浓度。根据分子和细胞蛋白质组学的报道,他们发现CSF PrP随着疾病的进展而减少,所以降低PrP药物的剂量研究应该集中在有症状的高危个体上。请阅读美国生物化学和分子生物学学会发布的新闻稿。

    绘制癌症中免疫细胞的多样性

    调节性T细胞(treg)可削弱抗肿瘤免疫反应,因此与几种癌症的不良预后有关。为了更好地了解treg在肿瘤发展中的作用,研究人员利用单细胞RNA测序技术,在基因工程小鼠肺腺癌模型中绘制了肿瘤发展过程中这些细胞的多样性。在《细胞报告》中,由Amy Li、Rebecca Herbst、David Canner、Aviv Regev、癌症项目高级副成员Tyler Jacks及其同事领导的研究小组提供了肿瘤微环境中Tregs多样性的高分辨率视图,从而突出了治疗干预的潜在途径。

    肾脏器官会竖起大拇指

    从患者诱导多能干细胞(iPS)中培养的人肾脏类器官是一种很有前途的新工具,用于开发急需的精确治疗。学习如何复制这些瀑样跨“诱导多能性”细胞,Ayshwarya萨勃拉曼尼亚,Eriene-Heidi Sidhom, Maheswarareddy Emani,协会成员和肾病倡议主任安娜Greka,和他的同事们分析了约450000个细胞肾瀑样来自四个iPS细胞系,相比他们单细胞概要文件从成人和胎儿肾脏。研究小组发现,类器官的组成和发育是人类肾脏组织的可靠替代物,将类器官移植到小鼠体内可以进一步提高类器官的质量。在自然交流中学习更多。

    神经系统炎症的治疗靶点

    关于鞘脂代谢在调节中枢神经系统炎症和多发性硬化等疾病中的作用,人们知之甚少。Julian Avila-Pacheco、副成员Francisco Quintana、研究所科学家和代谢组学平台高级主任Clary Clish及其同事通过结合蛋白组学、代谢组学、转录组学和体内遗传微扰研究,发现了鞘脂类代谢对星形胶质细胞的影响。他们的发现发表在《细胞》杂志上,定义了一种驱动促炎性星形细胞活动的新机制,概述了线粒体抗病毒信号蛋白在中枢神经系统炎症中的新作用,并确定了鞘脂类代谢是治疗中枢神经系统炎症的一个有希望的靶点。

    疟原虫将如何抵抗这种药物?

    恶性疟原虫对临床使用的每一种疟疾药物都产生了迅速的耐药性。在药物开发的早期就发现这种寄生虫的分子逃逸路线,可以帮助研究人员找到更好的药物。为了解决这个问题,IDMP研究所的成员Dyann Wirth和她的团队设计了一种预测疟原虫抗性机制的方法,他们在《科学转化医学》上描述了这种方法。研究人员在体外和受感染的小鼠体内都将这种寄生虫暴露在能够阻断疟疾病毒的二氢旋转脱氢酶(DHODH)的化合物中。然后,他们选择耐药生物并对其基因组进行排序。研究小组发现,在体外和小鼠体内,耐药寄生虫也出现了类似的快速耐药性和共同突变。研究人员得出结论,选择体外耐药性可以预测体内耐药性,并认为这种方法可用于潜在新药的筛选。

    解密蛋白质串扰,一次一个细胞

    蛋白质参与功能途径并形成一系列复杂的相互作用来驱动细胞的行为。理解这种“相互作用组”对于理解驱动生物学的机制至关重要。尽管科学家们创造了一个有价值的“参考相互作用组”,将这些相互作用概括为一个单一的资源,但这种工具无法提供特定于不同细胞类型的信息。 Shahin Mohammadi,Jose Davila-Velderrain和Epigenomics Program准成员Manolis Kellis在Cell Systems中描述了一种计算框架(SCINET),该框架可以单细胞分辨率分析此相互作用基因组。使用scRNA-seq,SCINET可以在单个细胞中重建相互作用基因组,从而使研究人员能够识别在各种条件下受干扰的单细胞相互作用。

    与ALS相关的新基因

    肌萎缩性侧索硬化症(ALS)是一种迟发性神经退行性疾病,众所周知,遗传因素是造成这一疾病的危险因素。为了发现与ALS相关的新基因,由Sali Farhan和研究所成员Benjamin Neale领导的一个小组在MPG中分析了3864名患者和7839名健康个体的外显子组,这是迄今为止最大的ALS外显子组病例对照研究。研究小组观察到ALS病例中罕见的蛋白质截短遗传变异,以及与已知ALS基因和新基因DNAJC7的关联。可通过ALS知识门户网站获得ALS遗传数据的摘要统计信息。查看《自然神经科学》中的完整故事。

    自闭症和多动症之间的遗传相似性

    自闭症谱系障碍(ASD)和注意力缺陷多动障碍(ADHD)具有重要的遗传成分,但是要收集大量的人群进行遗传分析一直是这两者的挑战。由Kyle Satterstrom,研究所成员,MPG联合主任Mark Daly和丹麦iPSYCH研究计划的同事组成的团队,利用已归档血斑的DNA分析了大约8,000名患有ASD和/或ADHD的儿童的外显子组以及5,000个对照,以更好地了解这些疾病的遗传结构。研究人员发现,ASD和ADHD在限制基因中截短变异的负担相似,并确定MAP1A基因中截短变异与患病风险有关。从《自然神经科学》和iPSYCH的新闻稿中了解更多信息。

相关报告
  • 《研究综述:2019年12月13日》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-12-26
    • 欢迎来到2019年12月13日的研究综述,这是布罗德研究所的科学家和他们的合作者发表的最新研究的一个重复快照。 帮助患者更好地预测免疫治疗 大多数癌症患者接受免疫检查点阻断(ICB)治疗,这是一种免疫疗法,要么产生耐药性,要么没有反应。对ICB反应的预测因素还没有完全确定。为了解决这个问题,一个跨学科的团队领导的临床和计算人员大卫·刘(博士后学者)和癌症计划会员以利以谢范-艾伦,连同Keith Flaherty Livnat Jerby-Arnon,研究所和核心成员和卡拉曼细胞天文台主任特拉维夫Regev,分析肿瘤样本来自一群144的晚期黑色素瘤患者,接受银行独立委员会。通过整合从患者队列收集的基因组、转录组和临床数据,研究人员能够发现对ICB反应和耐药的生物标志物,并开发临床适用的预测模型。请阅读《自然医学》和达纳-法伯癌症研究所(DFCI)的博客文章。 蛋白质成形 蛋白质的自然进化为它们的结构提供了线索。包括Nicholas Gauthier、Michael史蒂芬勒、Frank Poelwijk和癌症项目副成员Chris Sander在内的一个团队,与细胞回路项目副成员Debora Marks合作,假设蛋白质在细胞培养中经过几周的进化也有结构上的线索。他们的方法被称为3Dseq,在《细胞系统》(Cell Systems)一书中进行了描述。由此产生的变异的深度测序揭示了一起进化的位点,并可能在物理空间中相互作用,使他们能够计算蛋白质的三维结构。在DFCI的新闻发布会上,可以阅读更多关于这种新技术的信息,它使用两种抗菌素抗性蛋白进行了演示。 新的解剖学制图 为了创建真正强大的器官和组织的单细胞水平图集,在不同实验室中工作并且使用来自不同供体的材料的科学家需要一个通用的坐标框架(CCF):一个参考地图,使他们可以在空间上绘制从中收集的数据 许多人在人体中的相对位置相同。 在《单元中的透视图》中,Jennifer Rood,Tommaso Biancalani,Regev和人类细胞图谱协会的同事描述了以前的制图方法,概述了CCF应该使用的功能,并考虑了创建和使用CCF所面临的挑战。
  • 《研究综述:2019年6月14日》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-06-19
    • 欢迎阅读2019年6月14日的研究综述,这是Broad研究所科学家及其合作者最近发表的研究的反复快照。 筛选微生物群落 微生物群落在生物技术,农业和医学中具有潜在的应用,但如果没有准确的方法来预测它们的相互作用和环境响应,那么当前的工程策略是有限的。在PNAS中,由Jared Kehe,Anthony Kulesa和核心研究所成员Paul Blainey领导的团队介绍了kChip,这是一个构建和测试微生物合成群落的平台,每天大约有100,000个社区。作为示范,该团队确定了一组促进模式植物共生体Herbaspirillum frisingense生长的细菌。 kChip平台可以帮助发现微生物聚生体,用于抑制病原体或降解用于生物燃料生产的材料,以及测试生态学的一般理论。 血细胞的诞生 称为红细胞生成的多步骤过程会产生红细胞,对这一过程的深入了解可以帮助我们更好地了解贫血并开发新的疗法。在本周的细胞报告中,Leif Ludwig,Caleb Lareau,医学和群体遗传学项目的成员Vijay Sankaran,核心研究所成员和Klarman Cell Observatory主任Aviv Regev以及同事绘制了阶段特定的转录状态和染色质可及性。人类红细胞生成。他们的分析表明阶段特异性转录因子活动,将疾病和特征的基因变异映射到调节区域,并将TMCC2鉴定为终末红细胞生成中的调节因子。这项工作是进一步照亮红细胞生成中遗传调节因子和相关疾病原因的有用资源。 分心偏转器 为了生存,人类和动物必须从环境中提取相关信号。由麦戈文研究所的Miho Nakajima和斯坦利精神病研究中心的成员Michael Halassa领导的神经元报告发现,大脑的前额皮质(PFC)通过一种新的基底神经节通路调节丘脑的感觉活动,这有助于在视觉之间进行选择。通过抑制分散注意力的方式来实现听觉刺激。新的PFC-GC-thalamus途径增强了感官辨别力,并用于以目标导向的方式抑制背景噪音。 微生物糖是IBD中的苦药 研究人员长期以来将肠道微生物组与炎症性肠病的变化联系起来,但推动这些联系的生物学尚不清楚。本周在PNAS,由马修·亨克,Chelsi Cassilly和哈佛大学高级副会员Jon Clardy领导的团队;和Douglas Kenny,Hera Vlamakis以及核心研究所成员和传染病和微生物组计划联合主任Ramnik Xavier在Broad上透露,其中一种肠道虫Ruminococcus gnavus会产生一种刺激克罗恩病免疫系统的多糖。之前的工作将R. gnavus与克罗恩的突发事件联系起来;这是第一项确定连接背后分子机制的研究。阅读更多新闻报道。 可以告诉人(细胞外)基质是什么 由分泌蛋白组成的细胞外基质(ECM)对于许多类型癌症的存活,生长和迁移至关重要。然而,关于ECM分泌中涉及的生物化学途径知之甚少。由Haoxin Li和核心研究所成员Stuart Schreiber(化学生物学和治疗科学计划)及其同事领导的团队使用计算方法寻找扰动破坏ECM分泌的基因。该小组在细胞化学生物学报告中证实,6-磷酸葡萄糖酸脱氢酶是一种参与碳水化合物代谢的细胞酶,是ECM分泌所必需的必需成分,从而为特定的代谢途径提供新的见解。 一种新的自闭症模型,由CRISPR提供 自闭症和其他神经发育障碍的小鼠研究已经产生了在临床试验中进行过测试的候选药物;然而,没有一个成功。由斯坦利中心的研究员冯国平领导的美国/中国研究小组利用CRISPR基因组编辑工程设计猕猴,在一个名为SHANK3的基因中表达自闭症相关突变。他们在自然界中写道,工程猕猴表现出与自闭症谱系障碍相似的行为和神经模式。他们说,新模型可以帮助科学家为某些神经发育障碍开发更好的治疗方案。在麻省理工学院的新闻报道和频谱报道中了解更多信息。