《Science | Cachd1与Wnt受体相互作用并调节斑马鱼大脑中的神经不对称性》

  • 编译者: 李康音
  • 发布时间:2024-05-09
  • 2024年5月2日, 伦敦大学学院等机构的研究人员在Science发表题为Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain的文章。

    神经系统左右两侧的神经元经常表现出不对称特性,但人们对这种差异是如何产生的却知之甚少。

    斑马鱼的基因筛选发现,跨膜蛋白Cachd1功能缺失会导致右侧哈氏神经元具有左侧特征。Cachd1 在神经元祖细胞中表达,在非对称环境信号的下游发挥作用,并影响正常非对称神经发生模式的时间。生化和结构分析表明,Cachd1 可同时与 Lrp6 和 Frizzled 家族 Wnt 共受体结合。与此相一致的是,lrp6突变斑马鱼失去了虹膜的不对称性,而外显实验支持了Cachd1在调节大脑Wnt通路活动中的作用。

    这些研究发现,Cachd1是一种保守的Wnt受体相互作用蛋白,它能调节斑马鱼大脑中侧向神经元的特性。

相关报告
  • 《Nature | 睡眠压力调节斑马鱼单神经元突触数量》

    • 编译者:李康音
    • 发布时间:2024-05-06
    • 2024年5月1日,伦敦大学学院的研究人员在期刊Nature上发表了题为Sleep pressure modulates single-neuron synapse number in zebrafish的文章。 睡眠几乎是一种普遍行为,其功能尚不清楚。突触平衡假说(synaptic homeostasis hypothesis)认为,需要睡眠来使清醒时突触数量和强度的增加恢复正常。一些针对大神经元群或小树突片段的研究发现了与突触平衡假说相一致的证据,但睡眠是仅仅作为一种允许状态发挥作用,还是在整个神经元范围内积极促进突触下调,目前尚不清楚。 该研究通过反复成像斑马鱼幼体在睡眠-觉醒状态下单个神经元上的所有兴奋性突触,发现突触在觉醒期(自发或强迫)获得,而在睡眠期则以神经元亚型依赖的方式丢失。然而,在长时间觉醒后伴有高睡眠压力的睡眠期间,突触损失最大,而在不间断睡眠的后半夜,突触损失最小。相反,在低睡眠压力期间,药物诱导的睡眠不足以引发突触丢失,除非在抑制去甲肾上腺素能的同时提高腺苷水平。该研究的结论是,睡眠依赖性突触丢失在单个神经元水平上受睡眠压力的调节,而且并非所有睡眠期都同样能够实现突触平衡的功能。
  • 《化学所首次利用静电场在微纳体系打破光传输的对称性》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-02
    •         与p-n结在微电子器件中的作用一样,光学二极管在光子回路中的作用至关重要。不同于电子的运动行为,光子传输通常是互易的,而且光子是不带电荷、没有静质量的玻色子,其传输行为很难通过一般手段进行操纵。如何打破光子传输的时间反演对称性,实现适用于片上集成的非互易光学元件一直是集成光电子领域面临的难题。目前打破光传输互易性的方法主要是利用特定材料的磁光效应,通过外加强磁场来实现光学二极管功能。但是磁光响应速度慢,强磁场体积庞大且难以作用到器件的局部区域,因此传统的磁光效应尚无法应用到集成光子芯片。发展新型非磁光学二极管和隔离器,在光学集成领域多年来一直没有实质性突破。   中国科学院化学研究所的研究人员在前期研究工作中发现,有机微纳晶体材料在激发状态下所形成的定域在单个分子上的Frenkel激子,相比于无机材料中的Wannier激子,具有更高的结合能和更长的激发态寿命,因此容易与光子耦合,从而形成激子极化激元(Exciton Polariton)(J. Am. Chem. Soc. 2011, 133, 7276-7279;Acc. Chem. Res. 2014, 47, 3448-3458; Angew. Chem. Int. Ed. 2015, 54, 7125-7129)。这是一种半光半物质的新的量子态,兼具光子和激子的属性。虽然光子本身的行为是很难进行人为操纵的,但是激子极化激元的形成,使得人们有可能通过对激子的操纵来间接地操纵光子(J. Am. Chem. Soc. 2012, 134, 2880-2883; Adv. Mater. 2012, 24, 1703-1708; Adv. Mater. 2013, 25, 2854-2859; J. Am. Chem. Soc. 2016, 138, 2122-2125; J. Am. Chem. Soc. 2017, 139, 11329-11332.)。Frenkel激子本是可以看作电偶极子,因此外加电场可以引起激子扩散、分离、复合等行为的改变。   最近他们与中国科技大学,清华大学及美国西北大学的研究人员合作,首次利用静电场对激子扩散行为的影响,在单根有机半导体纳米线中打破了光传输的对称性。他们将单根有机单晶纳米线波导材料置于一个外加电场中,电场与激子偶极相互作用,产生一个额外的作用势能,从而引起激子密度沿电场矢量方向重新分布。其结果是原本向纳米线的两个相反方向上等量对称传输的激子,在电场作用下发生了重新分配,而使得纳米线的两端输出的激子数目不再对等。由于激子与光子处于耦合状态,因此电场的引入可以同时打破光传输的对称性,实现电场控制的光学二极管功能(图1 A,B)。   研究发现,这样产生的光二极管效应对电场的响应速度非常快(<3 ns,图1F)。通过改变电场强度,可以对光学二极管行为进行调控;当电场方向发生反转时,不对称性也相应地发生反转。在此基础上,研究人员对有机纳米线光学材料施加一个高频脉冲交流电场,当电场方向发生快速转换时,光子向两边传输的不对称性可以进行快速切换,利用一个控制信号,在纳米线的两端得到相位相反的交变输出信号,从而实现了高频率、快速响应的单刀双掷微纳光开关(图1G)。这是首次在微纳结构中通过外加静电场调控光子行为来实现这一功能,这一结果为实现对光子学功能器件的远程控制,优化集成光子器件结构提供了重要借鉴,相关结果发表在Science Advances 2018, 4, eaap9861。