《植保学院周涛团队揭示玉米与病毒互作新机制》

  • 编译者: 李周晶
  • 发布时间:2024-10-29
  • 中国农业大学研究团队揭示了玉米剪接因子ZmU2AF65B调控mRNA监测通路及其被病毒蛋白阻遏的机制。该研究围绕玉米矮花叶病发生的分子机理,以主要病原物甘蔗花叶病毒(SCMV)编码的致病蛋白——核内含体蛋白酶NIa-Pro作为“探测器”,揭示了玉米中剪接因子ZmU2AF65B对mRNA监测通路的调控机制,并发现NIa-Pro通过抑制ZmU2AF65B-ZmUPF3分子模块的功能进而削弱了mRNA监测通路,从而有利于病毒侵染。该研究成果于8月23日发表在《科学进展》期刊上。

    mRNA监测通路是真核生物中重要的质控机制,负责识别和降解错误加工的mRNA。该研究发现,ZmU2AF65B通过与ZmUPF3等因子协同作用,实现对mRNA监测通路的正调控。然而,在SCMV侵染或ZmU2AF65B功能缺失的情况下,mRNA监测通路受阻,为病毒侵染提供了有利条件。进一步研究表明,NIa-Pro通过结合ZmU2AF65B的RRM结构域,干扰其RNA剪接调控功能,从而破坏ZmU2AF65B-ZmUPF3分子模块的抗病毒作用。

    这一发现不仅揭示了植物抗病毒的新机制,为开发新型抗病毒策略提供了理论依据,也为理解植物与病毒之间的相互作用提供了新的视角,并为未来的农业生物技术研究提供了重要参考。

相关报告
  • 《研究揭示棉花盐胁迫响应的调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-12-31
    • 近日,New Phytologist杂志在线刊发了中国农业大学化学控制研究中心题为 Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton 的研究论文,揭示棉花耐盐调控新机制。 盐胁迫是影响棉花产量和品质的主要逆境之一。由于棉花基因组复杂且转化周期长,棉花耐盐基因挖掘和耐盐基因功能研究较其他作物滞后。中国农业大学化学控制研究中心近期通过构建以及筛选棉花病毒诱导的基因沉默cDNA文库发现,沉默双功能蛋白磷酸酶GhDsPTP3基因能显著增强棉花的耐盐性。植物的PTPases参与调控多种信号途径,如细胞周期、离子转运、发育调控以及逆境胁迫等,但目前PTPases在植物耐盐中的分子调控机制还不清楚。 该研究利用生物化学、分子生物学和遗传学手段揭示了GhDsPTP3为棉花应答盐胁迫的一个重要的负调控蛋白磷酸酶,与膜联蛋白GhANN8互作反向调控胞质内的Ca2+势。盐胁迫诱导GhANN8的磷酸化,而GhDsPTP3能够与GhANN8互作并去除其磷酸化基团。盐胁迫下, GhDsPTP3与GhANN8反向调控GhSOS1基因表达促进Na+外排,GhDsPTP3-GhANN8介导的Ca2+势是调控Na+外排所必须的。在该研究中,研究人员发现过表达GhDsPTP3植株对盐胁迫的耐受性减弱,而过表达GhANN8植株对盐胁迫的耐受性增强,这与GhDsPTP3或GhANN8功能缺失结果一致。 综上所述,该研究揭示了一种GhDsPTP3-GhANN8介导的Ca2+信号模块,其作为棉花耐盐的重要组分,对棉花品种的耐盐遗传改良有一定的理论和现实意义。 中国农业大学穆春博士后和周琳博士为该论文的共同*作者,中国农业大学农学院李芳军副教授和美国德州农工大学的Shan Libo教授为该论文的共同通讯作者。
  • 《广州地化所揭示δ98/95Mo在化学风化过程中分馏的新机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-30
    •         限定陆源输入到海洋Mo同位素组成和通量是运用Mo同位素反演地质历史时期全球海洋和大气缺氧事件重要的前提。厘清Mo同位素在地壳岩石风化过程中分馏机制和探寻风化产物中偏轻的δ98/95Mo的主要宿主是限定河流输入到海洋中Mo同位素通量的主要途径。然而,目前关于Mo同位素在岩石化学风化过程中的具体分馏机制仍然不清楚,同时,风化产物中偏轻的δ98/95Mo的主要宿主仍未找到。因此,解决以上两个科学问题对于限定陆源输入到海洋的Mo同位素组成通量和完善Mo同位素指示功能具有重要的意义。   最近,中国科学院广州地球化学研究所韦刚健研究团队(稳定同位素地球化学学科组)王志兵博士及合作者调查了中国华南地区花岗岩风化剖面(长约40米)全岩、不同化学提取相态、粘土矿物组分以及剖面周边河流的δ98/95Mo组成特征。全岩结果显示,从风化剖面底部到顶部,Mo的迁移率(τ MoTiO2)从59.1%逐渐降低到 –77.0%,而δ98/95Mo组成从–1.46‰逐渐升高到–0.17‰。研究表明,风化剖面中δ98/95Mo组成的这种变化特征主要受吸附和解吸附过程控制,在这个过程中偏轻的δ98/95Mo优先被吸附和释放。依据化学提取实验进一步得出,Fe氧化物是风化产物中Mo的主要吸附体或宿主,其占据总Mo比例为41.5%–86.2%,同时,Fe氧化物相态δ98/95Mo组成(–1.57‰ - –0.59‰)偏轻于相应的全岩。因此,研究认为Fe氧化物吸附和解吸附过程控制着风化剖面中δ98/95Mo组成的变化特征。最后,通过对比风化剖面和河流δ98/95Mo组成特征相对于母岩的分馏程度,发现二者互补性明显,进一步说明了岩石化学风化控制着河流Mo同位素组成特征,进而影响着陆源输入Mo同位素组成和通量。   该研究首次提出Fe氧化物控制着化学风化过程中Mo同位素的分馏,其对深入了解化学风化过程中Mo同位素分馏机制和地表过程Mo同位素平衡问题具有重要的意义。   相关成果发表在Geochimica et Cosmochimica Acta期刊上。该项研究获得了国家自然科学基金和广州市科学(技术)研究专项重点项目项目资助。