《中国科学家揭示冠状病毒核酸内切酶nsp15调控宿主蛋白翻译的新机制》

  • 编译者: 李周晶
  • 发布时间:2025-08-22
  • 中国农业科学院上海兽医研究所家禽病毒病监测预警和防控团队首次系统阐明了冠状病毒核酸内切酶nsp15调控宿主蛋白翻译系统的分子机制,为深入理解冠状病毒劫持宿主细胞翻译机器提供了全新视角。相关研究成果发表在国际病原学权威期刊《PLOS Pathogens》上。

    Nsp15作为冠状病毒特有的保守蛋白,具有核糖核酸内切酶(EndoU)活性。既往研究表明,该蛋白可通过剪切病毒复制产生的负链RNA,减少病毒双链RNA(dsRNA)积累,在病毒复制转录和免疫逃逸中发挥关键作用。团队前期研究发现,nsp15能通过降解病毒dsRNA,抑制PKR-eIF2α信号通路激活,进而干扰抗病毒应激颗粒形成(PLOS Pathogens, 2021)。然而,nsp15与宿主细胞的互作网络及其功能机制仍有待阐明。

    该研究发现来自四个冠状病毒属的nsp15均能显著抑制宿主蛋白合成,并诱导多聚腺苷酸结合蛋白PABPC1发生核滞留,且这一过程严格依赖其EndoU酶活性。Nsp15特异性结合病毒RNA、237种宿主RNA、809个宿主蛋白,其中宿主RNA编码的蛋白以及809个互作蛋白显著富集于核糖体生物发生、RNA加工和翻译调控等通路。这些发现揭示了nsp15靶向宿主RNA和蛋白,干扰宿主蛋白翻译过程。

    以传染性支气管炎病毒(IBV)为模型,进一步解析nsp15在感染过程中的动态调控机制,发现野生型IBV凭借功能性nsp15有效控制病毒dsRNA积累,以不依赖PKR-eIF2α通路的方式抑制宿主蛋白翻译,同时维持PABPC1的胞质定位;EndoU活性缺陷突变株rIBV-nsp15-H238A则导致病毒dsRNA异常积累,激活PKR-eIF2α通路介导的翻译关闭,并引发PABPC1核转位,不利于病毒蛋白翻译;在PKR-eIF2α通路缺失条件下,野生型IBV仍保持翻译抑制能力,而突变株的抑制作用显著减弱。以上结果证实nsp15具有独立于PKR-eIF2α通路的翻译调控功能,且通过减少dsRNA的积累,帮助病毒规避了不利于其复制的PKR-eIF2α通路。

    该研究创新性地揭示了nsp15在冠状病毒感染中的双重调控机制:一方面通过调控病毒dsRNA水平,避免激活对病毒蛋白翻译有害的PKR-eIF2α通路;另一方面通过靶向宿主RNA和蛋白质网络,特异性抑制宿主蛋白翻译系统。这些发现不仅阐明了nsp15介导的宿主翻译关闭这一保守机制,更为理解冠状病毒高效利用宿主资源的分子基础提供了重要理论依据。

相关报告
  • 《科学家揭示外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短Ago亚型。原核长A和长B型Ago包括四个结构域,即N端结构域、PAZ结构域、MID结构域和PIWI结构域。这四个结构域在Ago蛋白系统发挥功能的过程中发挥重要的功能,缺一不可。原核短Ago不具备N端和PAZ结构域(图1a),因此原核短Ago在发挥功能时必须招募一些其他蛋白如SIR2和TIR蛋白,补偿N端和PAZ结构域的功能。     与真核生物相比,原核生物的Ago不仅可以介导由DNA引导的靶向DNA干扰,而且可以介导由RNA引导的靶向RNA或者DNA干扰。因此,原核生物的Ago展示出更多的功能,如靶向干扰噬菌体入侵和外源质粒DNA扩增、阻碍外源基因组的复制和增强基因的同源重组等。NAD+(烟酰胺腺嘌呤二核苷酸)是细胞生命活动周期中的重要代谢产物,NAD+的耗尽会直接导致真核或者原核生命个体的死亡。原核短Ago作为原核细菌的免疫系统关键蛋白,在识别入侵核酸后会激活NAD+酶的活性,耗尽个体的NAD+,诱导细胞的死亡,从而阻碍外源入侵基因组的复制和扩增,而这背后的结构机理仍然未知。     10月2日,中国科学院物理研究所/北京凝聚态物理国家研究中心丁玮团队和朱洪涛团队,与中国医学科学院和北京协和医学院病原生物研究所崔胜团队合作,在《自然》(Nature)上,发表了题为Nucleic Acid-triggered NADase activation of a short prokaryotic Argonaute的研究论文。该研究通过高分辨冷冻电镜技术与自主研发的自动化结构解析策略,在数百万计的冷冻电镜蛋白质颗粒中,高效地筛选并重构了与五个与原核短Ago系统相关的高分辨率三维结构——自抑制的功能单元单体、载有引导RNA/靶向DNA的功能单元单体、两个不同构象的功能单元的二聚体和功能单元的四聚体(图1b-c)。     研究以此结构为基础结合体外功能实验发现,在存在外源DNA的情况下,原核短Ago系统功能单元单体会从入侵基因的转录组中获得引导RNA片段。该引导RNA片段会与原核短Ago系统结合,并进一步通过碱基配对识别与引导RNA序列互补的目标DNA(图1b-c)。在此过程中,引导RNA可能从它在MID结构域中的结合位点上解离,以便引导RNA与靶向DNA的杂交双链的形成。杂交双链的形成会导致原核短Ago系统的构象发生变化,并通过MID结构域形成二聚体(图1c)。而在形成二聚体的过程中,一个功能单元的TIR结构域会发生翻转,且与另一个功能单元的TIR相互作用,使得两个TIR结构域以头尾相接的形式组织在一起,并在作用界面上形成一个完整的NADase活性位点(图1d)。两个二聚体会进一步通过它们的TIR结构域形成一个四聚体(图1e)。四聚体形式的组装体会发挥NADase的作用,耗尽细胞内的NAD+,导致细胞本身的死亡,阻碍了外源基因的扩增。该研究为剖析原核短Ago系统如何发挥功能奠定了重要的结构基础,并揭示了原核短Ago中NADase的激活机制以及导致细菌死亡的分子机理。
  • 《中国科学家揭示病毒通过过氧化物酶体自噬诱导细胞死亡新机制》

    • 编译者:李周晶
    • 发布时间:2025-08-22
    • 近日,中国农业科学院上海兽医研究所家禽病毒病监测预警和防控团队揭示了病毒感染通过ATM-PEX5-p62轴介导过氧化物酶体自噬触发细胞铁死亡发生的机制。相关研究发表在《Cell Reports》上。铁死亡是一种氧化型程序性细胞死亡形式,其特征是细胞内游离的二价铁离子过载和脂质过氧化物水平升高。最终导致细胞膜中多不饱和脂肪酸发生氧化降解,进而引发细胞死亡。目前,铁死亡的研究主要聚焦于经典信号通路,对于过氧化物酶体应激损伤及细胞氧化还原稳态失衡与铁死亡之间的关系,尚缺乏系统性的研究与报道。本研究发现,新城疫病毒感染能抑制细胞内抗氧化基因表达、促进活性氧生成,从而促使ATM蛋白从细胞核迁移至过氧化物酶体,并通过ATM-PEX5-p62通路激活过氧化物酶体自噬,进而导致细胞内铁离子的积累并触发铁死亡。该机制在其他RNA病毒中也得到验证,包括禽流感病毒和水疱性口炎病毒。研究证实,过氧化物酶体自噬介导的氧化还原失衡在调控细胞铁死亡过程中具有普遍性,是RNA病毒感染致病的重要机制之一,为深入理解RNA病毒致病机制及开发抗病毒新策略提供了新的理论依据。