《上海应物所在框架核酸诱导精确矿化结构方面取得重要进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-07-20
  • 仿生纳米孔道结构的设计与构建目前已成为一个研究热点,并且为生物分析、合成化学和限域催化等提供了新的可能。中国科学院上海应用物理研究所研究员樊春海、亚利桑那州立大学教授颜颢等合作提出了一种框架核酸诱导的团簇预水解策略,将经典硅化学引入 DNA 结构体系,成功实现了精确可控的 DNA ——二氧化硅固态纳米结构的制备。该研究工作以 Complex silica composite nanomaterials templated with DNA origami 为题,于 7 月 16 日在线发表于《自然》杂志( Nature 2018, doi: 10.1038/s41586-018-0332-7 )。

    以蛋白质离子通道为代表的生物孔道结构在生物体内的传质、换能和信号传导过程中发挥着关键性作用。经典的蛋白质纳米孔结构精确,然而其可控性和稳定性限制了它的广泛应用;通过电子束刻蚀固态纳米孔道则面临着成本高、重复性差、通量低等问题。采用自组装 DNA 纳米结构来合成纳米孔道结构则具有可编程设计、成本低廉、通量高等优点。然而, DNA 孔道结构的刚性和稳定性则又成为其广泛应用的障碍。因此,如何在维持 DNA 结构精确性的前提下提升其强度已成为 DNA 纳米技术领域的一个巨大挑战。樊春海团队近年来在发展精确自组装的框架核酸并应用于生物分子界面调控 , 发展高灵敏生物传感检测和活细胞分析等方面取得了系列进展 (JACS 2012, 134, 13148; Nature Chem, 2017, 9, 1056; Natl Sci Rev 2018, doi: 10.1093/nsr/nwx134) 。在樊春海和颜颢指导下,上海应用物理研究所博士刘小果和博士研究生靖薪薪、亚利桑那州立大学博士张菲等合作, 将框架核酸作为模板诱导团簇预水解,可以在纳米尺度上忠实地将 DNA 序列编码的自组装结构复制成具有刚性结构的精确二氧化硅构型,并且可以由二维平面结构拓展至三维框架、三维曲面结构、简单几何结构以至复杂有序结构。这一新策略一方面突破了传统硅化学合成在材料结构尺度上的限制,实现了纳米尺度的精确二氧化硅结构的制备;另一方面还能显著提高这种框架核酸的力学强度,使基于 DNA 的固态纳米孔在保持精确结构的同时还具备了更好的力学性能。这种框架核酸诱导的纳米孔道结构不仅精确、可控、稳定,而且价廉能大批量制造,为研究纳米孔道中的新奇物理、化学性质和分析应用提供了全新的工具。

    该研究工作得到了国家自然科学基金委、中国科学院、科技部等的资助,并得到了上海光源的支持。(物理生物学研究室 供稿)

相关报告
  • 《上海应物所等在框架核酸诱导精确矿化结构中取得进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-24
    • 仿生纳米孔道结构的设计与构建目前已成为一个研究热点,并且为生物分析、合成化学和限域催化等提供了新的可能。中国科学院上海应用物理研究所研究员樊春海、亚利桑那州立大学教授颜颢等合作提出了一种框架核酸诱导的团簇预水解策略,将经典st?ber硅化学引入DNA结构体系,成功实现了精确可控的DNA——二氧化硅固态纳米结构的制备。该研究工作以Complex silica composite nanomaterials templated with DNA origami 为题,于7月16日在线发表于《自然》杂志(Nature 2018, doi: 10.1038/s41586-018-0332-7)。   以蛋白质离子通道为代表的生物孔道结构在生物体内的传质、换能和信号传导过程中发挥着关键性作用。经典的蛋白质纳米孔结构精确,然而其可控性和稳定性限制了它的广泛应用;通过电子束刻蚀固态纳米孔道则面临着成本高、重复性差、通量低等问题。采用自组装DNA纳米结构来合成纳米孔道结构则具有可编程设计、成本低廉、通量高等优点。然而,DNA孔道结构的刚性和稳定性则又成为其广泛应用的障碍。因此,如何在维持DNA结构精确性的前提下提升其强度已成为DNA纳米技术领域的一个巨大挑战。樊春海团队近年来在发展精确自组装的框架核酸并应用于生物分子界面调控,发展高灵敏生物传感检测和活细胞分析等方面取得了系列进展(JACS 2012, 134, 13148;Nature Chem, 2017, 9, 1056;Natl Sci Rev 2018, doi: 10.1093/nsr/nwx134)。在樊春海和颜颢指导下,上海应物所博士刘小果和博士研究生靖薪薪、亚利桑那州立大学博士张菲等合作,将框架核酸作为模板诱导团簇预水解,可以在纳米尺度上忠实地将DNA序列编码的自组装结构复制成具有刚性结构的精确二氧化硅构型,并且可以由二维平面结构拓展至三维框架、三维曲面结构、简单几何结构以至复杂有序结构。这一新策略一方面突破了传统硅化学合成在材料结构尺度上的限制,实现了纳米尺度的精确二氧化硅结构的制备;另一方面还能显著提高这种框架核酸的力学强度,使基于DNA的固态纳米孔在保持精确结构的同时还具备了更好的力学性能。这种框架核酸诱导的纳米孔道结构不仅精确、可控、稳定,而且价廉能大批量制造,为研究纳米孔道中的新奇物理、化学性质和分析应用提供了全新的工具。   该研究工作得到了国家自然科学基金委、中国科学院、科技部等的资助,并得到了上海光源的支持
  • 《山西煤化所在低值煤沥青构筑高性能电容炭方面取得多项重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-03-13
    • 焦化行业产生大量低值的煤沥青副产品,如何使其高附加值化一直是各方关注的焦点,利用其灰分低、残炭率高等特点而制备的多孔电极炭,可用于电化学储能等新兴能源领域。然而煤沥青高温成炭过程中需经历液相炭化,故对其微观形貌和孔隙结构的调控极其困难,加之稠环分子的反应惰性又使其炭产品表面化学性质难以裁剪。   近年来,山西煤化所702课题组李开喜研究员及其带领的科研团队,通过对沥青分子精准设计,无模板构筑了一系列纳米结构电极材料(图1),组装了高性能柔性全固态电容器和非对称电容器,实现其能量密度和循环稳定性的显著提升,且交联自组装策略还成功应用于沥青基球状活性炭生产线上,取得了基础和应用双突破。   图1 从煤沥青出发制备高性能电容炭示意图   对煤沥青组成的精细化认识是其高效利用的前提,通过构建合适的溶剂体系将其切割为组成结构相近的各族组成,依据沥青中喹啉可溶物族组分的分子特点,经磺化改性和常规活化后构筑了面向全固态的超级电容器应用的纳米层状炭(Journal of Materials Chemistry A, 2017, 5(30):15869-15878;Fuel, 2019, 242: 184-194)。随后,基于轻质族组分自发泡原理,实现蜂窝状多孔炭形貌和中孔比例的调控,显著增益其内部电解液传质和表界面活性位点暴露效果(ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2116-2126)。为精准调控稠环分子间距,采用氧化交联的方法接枝大量悬键,并以此为“抓手”促进分子可控自组装,实现纳米层状炭微观形貌和2~5 nm孔隙结构的同步控制,进一步提高其电化学储能性质(Journal of Power Sources, 2019: 227446)。鉴于表面化学性质的定向设计和优化可有效改善炭材料电子特性和化学性质(ACS Applied Materials & Interfaces, 2019, 11(14): 13214-13224),通过自由基诱导沥青分子聚合以及在炭骨架结构中掺杂异原子,制备了N/S功能化堆叠式炭纳米片(图2)。组装的非对称全固态超级电容器在电流密度1A g-1时比电容为458 F g-1,其体积能量密度可达27 Wh L-1,功率密度为296 W L-1,在2万次循环后容量衰减率仅为5.9%(图3),非常适合狭窄空间应用场景(Energy Storage Materials, 2020, 26: 119-128)。   图2 层堆叠纳米炭材料微观形貌和表面元素XPS、mapping分析   图3 电化学性能表征   以上工作提出的煤沥青基纳米多孔炭材料的构筑策略,为探索大规模电化学储能电极材料的低成本制备开辟了新的视野,并得到了国家自然科学-山西省低碳联合重点基金、山西省自然科学基金和山西省煤基重点科技攻关项目的支持。   原文链接:   https://pubs.rsc.org/en/content/articlelanding/2017/TA/C7TA02966G#!divAbstract;   https://sciencedirect.xilesou.top/science/article/pii/S0016236119300341;   https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.8b04736;   https://pubs.acs.org/doi/abs/10.1021/acsami.8b22370;   http://www.sciencedirect.com/science/article/pii/S0378775319314399;   http://www.sciencedirect.com/science/article/pii/S240582971931116X.