《生物全合成的自组装纳米疫苗研究取得进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-09-09
  • 新型疫苗的快速研制对于防治突发传染病和重大疾病具有重要意义。组分设计、剂型构建、制备工艺与疫苗的应用效果和转化潜力密切相关。近日,中国科学院过程工程研究所与军事医学研究院生物工程研究所合作,采用生物全合成技术构建一种自组装蛋白纳米颗粒,以此为“底盘”制备的多糖和多肽类纳米疫苗,在多种动物模型中均展现出良好的安全性和高效的免疫应答水平,显着增强了传染病预防和肿瘤治疗的效果。
    针对现有纳米疫苗体系制备工艺繁琐、抗原负载量低、机体免疫应答较弱等难题,该研究将细菌毒素B5(能够与细胞表面受体神经节苷脂结合)和非天然三聚体肽融合,构建出一种安全高效的自组装纳米疫苗“底盘”,用于新型疫苗的按需快速构建。该纳米疫苗“底盘”为生物合成的蛋白骨架,避免了外源性合成材料的引入,保证了疫苗使用的安全性。采用融合表达或蛋白糖基化修饰策略,可轻松实现多肽、多糖等不同类型抗原在“底盘”上的高效负载,无需额外化学偶联过程。相比于单纯抗原,纳米疫苗避免了抗原在注射部位的快速清除,同时实现了淋巴结的有效富集。在无需额外添加佐剂的情况下,纳米疫苗能够快速激活抗原提呈细胞,并促进对抗原的摄取和交叉提呈,进而强化后续的免疫应答水平。
    基于该纳米“底盘”构建的多糖结合疫苗在小鼠、猴等多种动物模型中成功诱导生成了针对志贺氏菌和甲型副伤寒沙门氏菌的高水平保护性抗体,其抗体滴度远优于商品化铝佐剂剂型。而基于该纳米“底盘”构建的肿瘤疫苗同样表现优异,能够快速激发小鼠体内的细胞免疫应答,显着抑制肿瘤生长并延长了小鼠存活时间。这种通用的“底盘”策略及模块化组合的疫苗设计理念,为抗肿瘤、抗细菌、抗病毒等高效疫苗的研发提供了新思路。

  • 原文来源:http://news.bioon.com/article/6778039.html
相关报告
  • 《国家纳米科学中心丁宝全课题组在基于DNA纳米机器的肿瘤疫苗方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-10-21
    • 国家纳米科学中心丁宝全研究员课题组在DNA纳米机器用于精准化智能化肿瘤疫苗研究方向取得重要进展。研究成果“A DNA nanodevice-based vaccine for cancer immunotherapy”发表于Nature Materials(DOI:10.1038/s41563-020-0793-6; https://rdcu.be/b6SOx)。 恶性肿瘤是一类严重危害人类健康的重大疾病。肿瘤免疫治疗能够调控自身的免疫系统,有效地清除恶性肿瘤细胞。多种肿瘤免疫治疗策略为肿瘤治疗带来了新的希望。其中肿瘤疫苗研究被广泛关注,尤其是针对特定患者的个体化疫苗越来越受到研究者的重视。然而,疫苗在前期研究和临床试验中的抗肿瘤治疗效果仍然不理想。其中一个主要的原因是缺少理想的运输载体,将佐剂分子和抗原分子高效共递送到淋巴器官,从而实现高效的免疫系统激活。此外,免疫功能成分精准定量及在其作用位点的可控释放也是极大的挑战。 基于分子自组装的DNA纳米结构具有结构精确可控、易于化学修饰、生物可降解等特点,是一种很有潜力的纳米载体,在药物靶向运输、可控释放、多种药物协同运输治疗等方面已展示了非常广阔的应用前景。丁宝全课题组在前期的工作中根据生理病理的标志物分子设计构筑了刺激响应型DNA自组装结构及DNA纳米机器,实现了功能蛋白、核酸药物、小分子化药等组分的精准靶向递送及可控释放,在动物水平的多种肿瘤模型展现了良好的治疗效果(Nature Biotechnol., 2018, 3, 258; Angew. Chem. Int. Ed., 2018, 57, 15486; J. Am. Chem. Soc., 2019, 141, 19032)。这些研究提出了药物递送体系程序化设计的研究思路,为肿瘤等疾病的治疗提供了全新的精准化智能化策略。 在前期研究的基础上,丁宝全课题组提出了利用DNA纳米机器构建抗肿瘤疫苗的概念。他们利用DNA折纸技术,构建尺寸形状精准可控、同时搭载肿瘤抗原和多种佐剂的肿瘤疫苗体系,利用抗原特异性的免疫反应进行肿瘤免疫治疗。首先选用肿瘤抗原多肽与单链DNA进行共价偶联,同时针对位于免疫细胞内涵体内的免疫通路受体TLR3及TLR9选取核酸免疫佐剂dsRNA 与CpG,通过核酸分子的杂交在纳米机器内部进行定位定量的装载。设计酸响应的DNA分子锁将装载了各种功能成分的DNA结构封闭,形成完整闭合的DNA纳米机器,保护内部的免疫功能组分。DNA纳米机器由于特殊设计的尺寸形状能够被高效富集到淋巴结,当进入淋巴结内树突细胞后,在内涵体微酸性环境中,分子锁响应性开启,DNA纳米机器由关闭状态转变为开启状态,共同释放抗原和多种佐剂,刺激树突细胞活化和抗原递呈,诱发抗原特异性免疫反应,有效杀伤肿瘤细胞。搭载不同肿瘤抗原多肽的DNA纳米机器在黑色素瘤、结直肠肿瘤小鼠模型上都展现良好的抗肿瘤疗效。由于解决了肿瘤疫苗精准化及多佐剂联用的难题,纳米机器显示了长期的免疫记忆效果,有效抑制肿瘤复发与转移。这种基于多种成分共同精准组装、刺激响应控制的DNA纳米机器在肿瘤疫苗体系的开发及个体化的肿瘤免疫治疗应用中显示了巨大潜力。同时,DNA纳米机器具有可程序化设计的特点,可以通过进一步设计优化用于病毒相关抗原及佐剂等功能成分的递送,有望为抗病毒疫苗的构建提供全新的平台。 国家纳米科学中心博士生刘少利和蒋乔研究员为该论文的共同第一作者,丁宝全研究员为通讯作者。该研究得到北京市科技计划(前沿新材料研究)、国家自然科学基金、中国科学院战略性先导科技专项及前沿科学重点研究计划、科技部重点研发计划等项目的支持。   (a)DNA折纸构建肿瘤抗原肽/ CpG环/ dsRNA共同负载的纳米机器肿瘤疫苗示意图 (b)利用DNA纳米机器进行癌症免疫治疗的示意图
  • 《国家纳米科学中心:丁宝全课题组自组装金属等离子体纳米结构研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-21
    • 自组装贵金属纳米结构在光学检测器件中有重要的应用,如表面增强荧光散射、表面增强拉曼光谱和非线性光学等。如何能在纳米尺度上对贵金属纳米结构进行精确的控制,是具有挑战性的前沿课题之一。近年发展起来的DNA折纸术是一种独特的自下而上的自组装纳米技术,被用于制备多种尺寸、形貌的二维和三维纳米图案。DNA折纸纳米结构由于结构可设计性和空间寻址能力,在精确引导金属纳米粒子自组装形成可调控性能方面具有显著的优势。   2012年以来,国家纳米科学中心丁宝全课题组在利用DNA折纸结构作为模板构建三维的贵金属纳米结构以及其手性光学性质方面做创新性研究(J. Am. Chem. Soc., 2012, 134, 146; Nano Lett., 2013, 13, 2128; J. Am. Chem. Soc., 2016, 138, 5495)。在构建刺激响应性的金属纳米结构和三维可重构的金属纳米结构方面也有重要进展(Nano Lett., 2017, 17, 7125;ACS Nano, 2017, 11, 1172)。在最近发表的研究工作中,丁宝全研究组针对金蝴蝶结纳米天线(Bowtie nanoantenna)光学性质,首次利用DNA折纸技术作为模板构建了大约5nm间距的金蝴蝶结纳米天线,并且利用DNA折纸结构的可寻址性,在蝴蝶结纳米天线的中间可控的放置了一个拉曼探针分子,实现了单结构、单分子的拉曼增强。该研究成果以题为“DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single Molecule Surface-Enhanced Raman Scattering”被Angew. Chem. Int. Ed.杂志在线发表(2018, DOI: 10.1002/anie.201712749)。   金的蝴蝶结纳米天线应用在光信号处理及超灵敏传感等研究已经被广泛的报道。但是之前的研究工作中所有的金属蝴蝶结结构的构建都是使用的微加工相关方法,而使用组装的方式来构建bowtie结构还从未有过报道。金三棱片(gold nanoprism)是典型的二维金属纳米结构,可在尖端产生很强的局域表面等离激元,基于两个金三棱柱构建的蝴蝶结天线会在二者尖端区域产生非常强的电磁场增强,这种增强效应在光学检测有很重要的应用。以DNA折纸结构为模板精确组装二维金属纳米结构尚属首次报导。与传统的单分子拉曼增强方法相比,这种策略的优越性在于可以精确控制拉曼探针分子的位置以及数量,从而实现可控的高强度的拉曼增强。这种组装体系有望作为一种单分子反应的检测器:通过监测拉曼信号变化,实现监测单个分子的反应进程。利用这种方法构建的蝴蝶结纳米天线,将可以与多种光学元件进行共组装为构建自组装的光学器件提供新的思路。该制备方法已申请中国发明专利。   该研究得到了国家自然基金委和中国科学院前沿科学重点研究计划等项目的支持。 a)DNA折纸结构模板组装金属bowtie结构示意图;b)金bowtie结构的原子力显微镜图和电镜图;c)单分子拉曼图谱