《探索 | 远距离太赫兹双基地反向散射边信道传感》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-04-19
  • 美国佐治亚理工学院的研究人员提出了一种反向散射太赫兹(THz)边信道的传感和检测方案,这由双基地布局的现场可编程门阵列(FPGA)活动无意中产生。该项研究发表在《IEEE Transactions on Antennas and Propagation》上。

    图 1.发射器、接收器和简化的 FPGA 电路的3-D 电磁模型
    来自数字设备或计算系统的电磁 (EM) 辐射可以创建边信道。这些 EM 侧信道较早被用于物理攻击,这些攻击是电子安全的主要关注点。最近,EM 侧通道已被用于其他应用程序,例如,嵌入式硬件设备的证明、外部恶意软件和恶意活动检测,以及休眠硬件木马的检测。人们越来越关注使用电磁(EM)边信道来分析和监控数字电子和计算系统。基本方法是建立接收到的边信道信号与应用程序执行之间的相关性,可用于构建系统正常行为的参考模型。为了进行监控,可以将接收到的信号与模型进行比较,以决定系统的功能或状态。
    具体来说,远距离监控项目活动是主要关注点。基于 EM 的监测需要天线或近场聚焦器。例如,分别使用 EM 探针和天线在近场和远场的微波频率下检测和监控外部恶意软件。工作频率约为 1 GHz 的高增益天线被证明可以在一定距离内检测恶意软件。开发了一种微水平模拟工具,可以模拟 EM 侧通道,并有助于测量系统的侧通道泄漏。为了实现基于 EM 的远距离监测,需要了解来自现场可编程门阵列 (FPGA) 的反向散射辐射的基本机制。来自 FPGA 的辐射机制是基于晶体管开关引起的无意调制。为了完成它的任务,FPGA 中的数字电路被馈入一个时钟信号,这会导致电路走线的阻抗周期性地变化。当 FPGA 的表面被强载波信号激发时,该信号会耦合到数字电路上,并受到开关活动的调制。然后,所有这些信号都通过 EM 泄漏进行反向散射,并且可以被检测到。出于实际目的和设备的限制,研究人员已经探讨了双基地布置;然而,发射器和接收器并置的布置将产生相同的结果。
    这里,研究人员介绍了一种300 GHz下的后向散射侧信道传感方案,使用的是一种普通FPGA。利用一个结构简化的FPGA模型和一个近场聚焦器,对这一惊讶的现象进行了电磁电路联合仿真分析。

    图 2. 300 GHz 反向散射侧信道测量设置
    首先,由于FPGA内部的开关活动,将单个频率调制到太赫兹载波上,并在一定距离处接收该调制频率。他们研究了偏振和接收机距离对后向散射信号的影响,发现在发射机和接收机之间故意引入极化失配可以将信噪比(SNR)提高10 dB以上。这使得信号可以在大于45 cm的距离接收,信噪比高于54 dB,从而可以在几米外进行检测。通过使用近场聚焦,在FPGA板表面以0.5 mm的分辨率测量边通道信号的特性。接下来,通过将FPGA拆分为四个不同的模块,创建并检测四个不同频率的后向散射信号。他们比较了频率的相对强度,分析了来自不同模块的这些信号的物理位置和强度的结论。研究发现,将后向散射系统聚焦在FPGA上的特定位置可以优先接收来自一个模块的信号,同时过滤掉其他模块。这有助于隔离FPGA中不同模块产生的信号,并显著提高侧通道检测技术的有效性。

相关报告
  • 《探索 | 科学家实现硅基芯片上远距离量子逻辑》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-12-11
    • 为了发挥量子计算的潜力,需要协调数百万个量子比特共同工作。在量子计算领域,半导体自旋量子比特(通常是量子点中的单个电子)因其小巧的体积,以及与集成电路技术的兼容性,而成为理想的选择之一。 然而,量子比特之间的直接相互作用,会随着距离的增加而自然减弱。而未来的量子计算架构,可能需要在不同距离尺度上的量子比特之间建立相互作用机制。 需要了解的是,这些量子比特通过最近邻耦合相互作用,它们之间的距离大约只有 100 纳米。目前,该技术最先进的水平是 Intel 公司的 12 量子比特的量子处理器。与此同时,科学家们为增加量子比特的数量仍在不断努力。 但是,要将量子比特的数量扩展到数百万级别并非易事,它仍然面临着一个重大挑战:控制线路必须连接到芯片上的每个单个量子比特。 近期,荷兰代尔夫特理工大学团队开发了一种新方法,旨在通过允许自旋量子比特在更长的距离(几百微米)上相互作用,来克服上述挑战。 他们以微波谐振器中的虚拟光子为介导,芯片上局部和远距离耦合的组合实现了分布式架构。在两个相隔 250 微米的半导体自旋量子比特之间,实现了相干两比特逻辑,这一距离是该平台上常用直接相互作用机制的数个数量级。 研究人员报告了两个自旋量子比特的反相位振荡,且其频率可控。观察结果与量子比特的 iSWAP 振荡模型一致,并证明了在 10 纳秒内实现纠缠操作的可能性。 通过这种新方法,量子比特之间的通信和操作能够在更大的空间范围内进行,为芯片上可扩展的自旋量子比特模块网络带来了新的希望。 这项研究不仅显著延长了量子比特间相互作用的距离,还为未来量子计算机的模块化设计提供了新的思路。 近日,相关论文以《谐振腔介导的长距离自旋间的 iSWAP 振荡》(Cavity-mediated iSWAP oscillations between distant spins)为题发表在 Nature Physics 研究人员设想将局部量子位寄存器在芯片上分布式摆放,中间留有空间用于布线,也可能用于部分控制电子设备。在这种架构中,光谱学中已经观察到远距离自旋之间的耦合,然而时域中的自旋-自旋演化仍然是一个未完成的目标。 该课题组制备了一个 250 微米长的微波超导谐振器,两端都有双量子点结构,每个双量子点上都沉积了一对微磁体。 在 10 毫开尔文的温度下,实现了在每个双量子点中捕获一个单独的电子。在外加磁场中,电子的自旋提供了一个两能级系统,研究人员将其用来编码一个量子比特。 图丨量子点-谐振器-量子点器件 需要了解的是,实现远距离自旋-自旋耦合(通过虚拟光子)的首要必要条件,是实现两侧的强自旋-光子耦合。这意味着,耦合强度必须远超过自旋退相干时间和谐振器中光子的寿命。 他们通过电荷自由度间接建立了电子自旋与光子的耦合。当电子能够在两个量子点之间自由振荡时,其电荷很容易与谐振器光子相互作用。同时,自旋-电荷耦合通过附近微磁体的梯度场产生,进而实现了自旋-光子的耦合。 基于此,研究人员可以方便地通过将电子固定在单个量子点中,来快速关闭这种相互作用。 根据自旋电路量子电动力学原理,当同时打开两侧的单个自旋-光子耦合,且两个自旋频率相互共振但与谐振器失谐时,会导致两个自旋量子比特的状态在 01 和 10 间周期性演化。 因此,该课题组进行了一个实验,其中准备了两个量子比特,一个处于基态,另一个处于激发态。研究人员在实验中观察到,远距离自旋之间的反相振荡。 实验数据显示,它们的状态在大约 42 纳秒内发生了交换。预计经过大约 21 纳秒的耦合时间,可以最大限度地纠缠两个自旋。此外,该团队实现相干地耦合了相隔 250 微米的两个电子自旋,并能够控制和探测它们随时间的演化。 图丨两个远距离自旋量子比特之间的 iSWAP 振荡 虽然实验中观察到了远距离自旋之间的显著反相振荡现象,但这些振荡伴随着明显的衰减。衰减的原因在于,自旋相互作用时信息会相对迅速地丢失到环境中。 为了提高自旋-光子耦合率,研究人员特意增强了电子自旋与其电荷的耦合,但这也让自旋更容易受到设备中电噪声的影响,进而降低了性能。 为实现操作的准确性,他们通过测量和建模的结合估计约为 83%,尚未达到容错量子计算所需的阈值(需超过 99%)。 该论文的作者认为,降低系统中的电噪声,在现有技术下是可行的,将有助于使操作精度超过阈值。此外,增加单个自旋-光子耦合率也是有益的,因为这将使得操作在电子自旋不太容易受到电荷噪声影响的状态下进行,同时不影响相互作用速度。 这些改进为扩展自旋量子比特的规模,提供了一种有发展前景的架构解决方案。同时,也可能为量子模拟领域带来新的机遇,例如规模化的量子系统可用于研究复杂的多体物理问题。 此外,这项技术还使得研究与费米子和玻色子自由度相关的模型成为可能,特别是通过电子自旋与微波光子相互作用来实现。
  • 《探索氦离子束光刻的近距离效应和大深度:大面积致密模式和倾斜表面暴露。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-05-10
    • 氦离子束光刻(HIL)是一种新兴的纳米技术。与类似能量的电子束相比,它能从减少的相互作用量中获益,从而降低了远距离散射(近距离效应),更高的抵抗灵敏度和更高的分辨率。此外,氦离子束的小角扩散会产生较大的磁场深度。这样就可以在不需要任何额外调整的情况下,在倾斜和弯曲的表面上形成图案,例如激光自动聚焦。到目前为止,HIL的大部分工作都集中在利用减少的近距离效应来达到单位数的纳米分辨率,因此一直专注于在小范围内的单像素曝光。这里我们将探索两个新的应用领域。首先,我们调查的邻近效应大面积接触和展示边境的能力制造精确的高密度光栅对大型平面表面(μm 100×100μm与俯冲到35海里)使用面积为暴露剂量。其次,我们通过在倾斜表面上的第一个HIL模式来开发大的景深(样本阶段倾斜45)。我们将演示一个景深大于100μm大约20海里的一项决议。 ——文章发布于2018年5月8日