本文内容转载自“ BioArt”微信公众号。原文链接: https://mp.weixin.qq.com/s/VZbnIV4ZStKS0VGIrVpSFQ
2023年11月15日,英国Francis Crick研究所的Claudio Bussi和Maximiliano G. Gutierrez合作在Nature上发表了题为Stress granules plug and stabilize damaged endolysosomal membranes的研究论文。该研究发现溶酶体膜损伤后应激颗粒在损伤位点迅速形成,并通过类似“塞子”的作用阻止溶酶体内容物从膜破损处流出,以稳定破损的溶酶体膜和有效修复,这一功能对于宿主抵御病原体诱导的内膜损伤非常重要。
内吞溶酶体的损伤导致膜穿孔的形成,如果不能被及时修复就会引起溶酶体囊泡的破裂、内容物(主要为蛋白酶类)的外溢以及细胞死亡,因此真核生物进化出了ESCRT依赖和不依赖的两种途径来修复溶酶体膜的损伤。然而在这两种修复途径起作用之前,溶酶体膜是如何维持其稳定性的仍然未知。为了解释这个问题,作者将应激颗粒和溶酶体膜损伤联系起来,他们首先研究了LLOMe介导的内吞溶酶体损伤时G3BP-应激颗粒的形成动态,通过超高分辨率的活细胞成像系统,发现G3BP1蛋白-RNA可以快速地在溶酶体膜的损伤位点形成聚集体状的应激颗粒,并且这种应激颗粒类似于“塞子”的作用位于溶酶体的膜损伤位点,而损伤位点pH的改变是诱导应激颗粒形成的原因。
随后,作者为了揭示应激颗粒在膜损伤位点的作用,他们利用Giant unilamellar vesicles(GUVs)系统体外研究G3BP1-RNA聚集体的功能,通过体外构建GUVs包埋G3BP1和RNA,并模拟细胞内的pH值环境。研究人员发现在诱导GUVs膜形成穿孔后,G3BP1可以在破损的位点快速形成聚集体,像一个“塞子”堵住膜穿孔。有趣的是,G3BP1-RNA应激颗粒可以触发膜穿孔边缘的浸润和稳定,防止膜塌陷和进一步的内容物泄漏;抑制聚集体的形成将导致囊泡的破裂。
总的来说,这篇文章发现了生物分子凝聚物的一种新功能,即应激颗粒选择性地在受损膜附近形成一个“塞子”,促进囊泡的稳定和存活,使得内膜得以快速修复,这对巨噬细胞抵御细胞内病原体对内膜系统的损伤至关重要。