《Nature | 应力颗粒堵塞并稳定受损的内溶酶体膜》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-19
  • 本文内容转载自“ BioArt”微信公众号。原文链接: https://mp.weixin.qq.com/s/VZbnIV4ZStKS0VGIrVpSFQ

    2023年11月15日,英国Francis Crick研究所的Claudio Bussi和Maximiliano G. Gutierrez合作在Nature上发表了题为Stress granules plug and stabilize damaged endolysosomal membranes的研究论文。该研究发现溶酶体膜损伤后应激颗粒在损伤位点迅速形成,并通过类似“塞子”的作用阻止溶酶体内容物从膜破损处流出,以稳定破损的溶酶体膜和有效修复,这一功能对于宿主抵御病原体诱导的内膜损伤非常重要。

    内吞溶酶体的损伤导致膜穿孔的形成,如果不能被及时修复就会引起溶酶体囊泡的破裂、内容物(主要为蛋白酶类)的外溢以及细胞死亡,因此真核生物进化出了ESCRT依赖和不依赖的两种途径来修复溶酶体膜的损伤。然而在这两种修复途径起作用之前,溶酶体膜是如何维持其稳定性的仍然未知。为了解释这个问题,作者将应激颗粒和溶酶体膜损伤联系起来,他们首先研究了LLOMe介导的内吞溶酶体损伤时G3BP-应激颗粒的形成动态,通过超高分辨率的活细胞成像系统,发现G3BP1蛋白-RNA可以快速地在溶酶体膜的损伤位点形成聚集体状的应激颗粒,并且这种应激颗粒类似于“塞子”的作用位于溶酶体的膜损伤位点,而损伤位点pH的改变是诱导应激颗粒形成的原因。

    随后,作者为了揭示应激颗粒在膜损伤位点的作用,他们利用Giant unilamellar vesicles(GUVs)系统体外研究G3BP1-RNA聚集体的功能,通过体外构建GUVs包埋G3BP1和RNA,并模拟细胞内的pH值环境。研究人员发现在诱导GUVs膜形成穿孔后,G3BP1可以在破损的位点快速形成聚集体,像一个“塞子”堵住膜穿孔。有趣的是,G3BP1-RNA应激颗粒可以触发膜穿孔边缘的浸润和稳定,防止膜塌陷和进一步的内容物泄漏;抑制聚集体的形成将导致囊泡的破裂。

    总的来说,这篇文章发现了生物分子凝聚物的一种新功能,即应激颗粒选择性地在受损膜附近形成一个“塞子”,促进囊泡的稳定和存活,使得内膜得以快速修复,这对巨噬细胞抵御细胞内病原体对内膜系统的损伤至关重要。

  • 原文来源:https://www.nature.com/articles/s41586-023-06726-w
相关报告
  • 《【Advanced Powder Materials】研究固体电解质在硅颗粒中的界面失效机制》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-07-15
    • 锂离子电池以其自放电率低、循环寿命长等优点在新能源汽车中得到广泛应用。目前商用锂离子电池的负极材料主要采用石墨,理论容量仅为372 mAh g -1 ,已逐渐不能满足日益增长的能量密度需求。 硅的理论容量高达 4,200 mAh g-1,因此被广泛研究。然而,硅在锂化和脱锂过程中会产生高达 300% 的体积变化,随之而来的机械退化和容量损失阻碍了其应用。 为了减少机械变形造成的不利影响,人们对硅结构进行了深入研究,并有效改善了循环性能。然而,硅基储能材料的长期发展不仅需要稳定的电极,还需要电极与电解质之间稳定的相位。 在传统锂离子电池中广泛使用的有机电解质会在阳极表面还原形成一层薄膜,称为固体电解质相(SEI)。 不幸的是,硅体积的急剧变化会导致应力的积累和 SEI 的破坏,随后 SEI 会在暴露的阳极表面再生,从而大大增加不可逆的锂和电解质消耗,并导致容量下降。因此,稳定硅材料上 SEI 的机械性能尤为重要。 为此,中国科学技术大学谭鹏领导的先进电源研究小组从电极材料特性、SEI 几何特性和电池工作条件三个方面对 SEI 的机械稳定性进行了建模研究。相关研究成果已发表在 Advanced Powder Materials 杂志上。 建模基于连续介质力学模型,并与电化学传质过程相结合。 研究小组通过建立单个电极颗粒模型,定量分析了三个因素对 SEI 稳定性和电池容量利用率的影响。 他们发现,为了提高 SEI 的稳定性,在设计电极材料时应尽量使用粒径较小的球形硅子。就 SEI 的几何形状而言,人工构建具有均匀结构的 SEI 尤为重要,而就电池操作而言,高倍率会带来更高的容量利用率,但不利于 SEI 的稳定性。这些发现证明了 SEI 的高稳定性设计和运行策略,并将指导具有高循环稳定性的硅基储能电池的开发。 原文链接: Junjie Ding et al, Investigating the failure mechanism of solid electrolyte interphase in silicon particles from an electrochemical-mechanical coupling perspective, Advanced Powder Materials (2024). DOI: 10.1016/j.apmate.2024.100200
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。