《Nature | 噬菌体通过 RNA 和 DNA 结合的螺旋转螺旋蛋白控制抗CRISPR》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-07-12
  • 2024年7月10日,奥塔哥大学等机构的研究人员在Nature发表题为Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein的文章。

    在所有生物体中,基因表达的调控都必须根据细胞的需要进行调整,这通常涉及到螺旋-翻转-螺旋(HTH)结构域蛋白。例如,在细菌和噬菌体之间的竞赛中,噬菌体的抗CRISPR(Acr )基因在感染后迅速表达,从而逃避CRISPR-Cas的防御;转录随后被含有HTH结构域的抗CRISPR相关(Aca)蛋白抑制,这可能是为了降低过度表达带来的健康代价。然而,单个 HTH 调节器如何调整抗CRISPR 的产生以应对噬菌体基因组拷贝的增加和Acr mRNA 的积累,目前尚不清楚。

    该研究发现调节因子 Aca2 的 HTH 结构域除了通过 DNA 结合抑制 Acr 的转录合成外,还通过结合保守的 RNA 干环和阻断核糖体的进入来抑制 mRNA 的翻译。约 40 kDa Aca2-RNA 复合物的冷冻电子显微镜结构展示了多功能 HTH 结构域如何从 DNA 结合位点特异性地识别 RNA。这些组合调控模式在 Aca2 家族中非常普遍,有助于在噬菌体 DNA 快速复制的情况下抑制 CRISPR-Cas,而不会出现有毒的 Acr 过表达。鉴于含 HTH 域蛋白的普遍性,预计还会有更多的含 HTH 域蛋白通过 DNA 和 RNA 的双重结合进行调控。

  • 原文来源:https://www.nature.com/articles/s41586-024-07644-1
相关报告
  • 《Nature:来自噬菌体的强力反击!噬菌体产生抗CRISRP RNA来抑制细菌CRISPR–Cas系统》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-10-23
    • 一项微观上的发现不仅能让科学家们了解我们周围的微生物世界,还能提供一种控制CRISPR-Cas生物技术的新方法。在一项新的研究中,新西兰奥塔哥大学的Peter Fineran教授和丹麦哥本哈根大学的Rafael Pinilla-Redondo博士领导的一个国际研究团队揭示了细菌病毒---也称为噬菌体---抑制细菌 CRISPR-Cas 免疫系统的一种新方法。相关研究结果于2023年10月18日在线发表在Nature期刊上,论文标题为“Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs”。 论文共同第一作者、奥塔哥大学微生物学与免疫学系噬菌体-宿主相互作用实验室的David Mayo-Muñoz博士说,这一发现可能让我们了解环境中的微生物动态、使基因编辑更安全,并带来更有效的抗生素替代品。他说,“这一发现令科学界兴奋不已,因为它让我们对如何阻止CRISPR-Cas防御有了更深入的了解。” CRISPR-Cas是细菌拥有的能够保护它们不受噬菌体感染的免疫系统。它的工作原理是将噬菌体的DNA片段添加到细菌的基因组中。细菌最终会有一个记忆库,里面储存着过去感染噬菌体的经历,它会把这些经历像人脸照片一样归档,在噬菌体再次攻击时,利用它们来识别和降解特定的噬菌体。 “如果有噬菌体入侵,它的部分 DNA 会被添加到记忆库中,然后在这个过程中将 DNA 转化为 RNA。每条 RNA 就像一个向导,这样 CRISPR-Cas 系统就能正确识别并消灭入侵的噬菌体。记忆库中的每一个添加的DNA片段都被CRISPR重复序列分割开来,这些重复序列就像书挡一样堆叠在相邻的噬菌体序列之间。有趣的是,噬菌体进化出了不同的方法来克服这些防御系统---这就像是一场进化军备竞赛。细菌拥有CRISPR-Cas,因此噬菌体开发出了抗CRISPR,这使它们能够阻断细菌的这些免疫复合物。” Mayo-Muñoz说,“我们发现了噬菌体阻止CRISPR-Cas系统的全新方法。” 之前的科学家们已发现,一些噬菌体的基因组中含有CRISPR重复序列,而在这项新的研究中,这些作者证实噬菌体会给细菌加载这些RNA重复序列,从而阻止CRISPR-Cas。 Fineran教授说,这些抗CRISPR RNA会使细菌的CRISPR-Cas免疫复合物失明。他说,“噬菌体的基因组中含有细菌CRISPR-Cas系统的成分。它们利用这些分子模拟物来抑制细菌的免疫系统,使噬菌体得以复制。” 这些作者还发现当噬菌体将 RNA 重复序列加载到 CRISPR-Cas 蛋白上时,并非所有正确的蛋白都会被加载,从而形成无功能的免疫复合物。“这种分子模拟物破坏了细菌的防御能力和CRISPR-Cas系统的功能;它基本上就是一个诱饵。” 人们对CRISPR-Cas的一大兴趣在于它经编程后能够精确地编辑基因组的特性。有趣的是,抗CRISPR可用作关闭或调整这项技术的安全开关。“要想发挥CRISPR-Cas技术的潜力,重要的是能够控制它、开启和关闭它以及调整它,从而提高其准确性和治疗效果。” Mayo-Muñoz博士说,“我们的发现首次证明了抗CRISPR RNA的存在,与之前发现的抗CRISPR蛋白相比,抗CRISPR RNA的遗传序列更短,而且由于它们是基于已知的CRISPR重复序列,我们有可能为所有CRISPR-Cas系统及其特定应用设计抗CRISPR RNA。” CRISPR-Cas最终将用于基因疗法---修复导致疾病的突变基因,但为了使它更安全,需要抗CRISPR来调节这种技术。 噬菌体还可以作为抗菌剂杀死病原菌,提供抗生素的替代品,但如果受感染的细菌具有活跃的CRISPR-Cas系统,就需要使用含有合适的抗CRISPR的噬菌体来中和它。 Fineran教授说,“能够构建定制的抗CRISPR将是工具箱中的一个强大选择。我们很高兴能够对噬菌体如何与细菌宿主作战提供全新的见解。我们希望这些 RNA anti-CRISPR RNA能够提供一种新的方法来协助控制 CRISPR-Cas 技术。” 参考资料: 1. Sarah Camara-Wilpert et al. Bacteriophages suppress CRISPR–Cas immunity through RNA-based anti-CRISPRs. Nature, 2023, doi:10.1038/s41586-023-06612-5. 2. Scientists uncover new way viruses fight back against bacteria https://phys.org/news/2023-10-scientists-uncover-viruses-bacteria.html
  • 《王艳丽组揭示噬菌体防御CRISPR-SpyCas9的分子机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-08
    • 2018年12月31日,《Molecular Cell》杂志在线发表了中国科学院生物物理研究所王艳丽课题组在CRISPR-Cas系统取得的最新研究进展。标题为“Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race”。该研究工作成功解析了Anti-CRISPR 蛋白 AcrIIA2与Streptococcus pyogenes Cas9 (SpyCas9) 蛋白及single-guide RNA (sgRNA) 的三元复合物3.3 埃的晶体结构,并结合体内和体外的功能实验,系统地阐述了噬菌体运用Anti-CRISPR 蛋白防御CRISPR-SpyCas9系统的分子机制。王艳丽课题组一直致力于CRISPR-Cas系统抗病毒作用机理的研究,前期研究揭示了一系列重要的CRISPR-Cas系统的作用机理 (Nature 2014, Cell 2015, Cell Res. 2016, Cell 2017a, Cell 2017b, Mol. Cell 2017, Cell 2018);该工作是王艳丽课题组首次在Anti-CRISPR蛋白防御CRISPR-Cas系统作用机理的研究上取得的重大突破。  CRISPR/Cas系统是古菌和细菌的抵抗病毒和质粒侵染的重要免疫防御系统。CRISPR-Cas系统划分为两大类,第一大类CRISPR-Cas系统由多亚基组成的效应复合物发挥功能;第二大类是由单个效应蛋白(如Cas9, Cas12a, Cas12b, Cas13等)来发挥功能。其中,Cas9, Cas12a, Cas12b均具有RNA介导的DNA核酸内切酶活性, Cas13a具有RNA介导的RNA核酸酶活性。面对细菌的免疫系统(CRISPR-Cas),噬菌体也相应的进化出了自己的防御系统(Anti-CRISPR)。2017年首次发现了Listeria monocytogenes 噬菌体来源的四个Anti-CRISPR蛋白,AcrIIA1, AcrIIA2, AcrIIA3 和AcrIIA4。研究发现AcrIIA2和AcrIIA4蛋白在细胞内能够抑制SpyCas9的基因编辑活性。随后的结构和功能研究表明AcrIIA4通过阻断DNA与SpyCas9的结合来抑制SpyCas9的功能,然而AcrIIA2抑制SpyCas9活性的分子机制一直未能阐述清楚。  在该研究中,研究人员首先通过生化实验发现AcrIIA2只与结合有sgRNA的SpyCas9二元复合物结合,并不与自由状态下的SpyCas9结合,也并不与同时结合有sgRNA和dsDNA的SpyCas9三元复合物结合。为了研究AcrIIA2直接抑制SpyCas9活性的分子机制,研究人员利用X-ray晶体学的方法成功解析了AcrIIA2-SpyCas9-sgRNA的三元复合物晶体结构 (3.3 埃)。结构发现AcrIIA2是由三个α螺旋及一个β折叠组成的紧凑结构,它结合在SpyCas9的一个带正电荷的凹槽区域。该区域由PI, HNH, WED, 和 REC2 结构域形成。PI结构域上R1333和R1335是识别dsDNA的PAM序列的关键氨基酸,AcrIIA2通过与R1333和R1335形成稳固的氢键从而阻断SpyCas9对PAM序列的识别,进而阻止SpyCas9对dsDNA的结合。而AcrIIA2的α1螺旋与HNH结构域的相互作用可以锚定HNH结构域,阻止其结合DNA必须发生的构象变化。另外,通过结构比对分析发现AcrIIA2有大量的带负电荷的氨基酸占据着dsDNA中PAM结合的位置,这表明AcrIIA2模拟带负电荷的DNA与SpyCas9结合从而阻止DNA与SpyCas9的结合。有趣的是,竞争性结合实验表明AcrIIA2并不能取代已经与SpyCas9-sgRNA结合的dsDNA, 而dsDNA也不能取代已经与SpyCas9-sgRNA结合的AcrIIA2。总之,通过结构和功能实验的证明,AcrIIA2主要通过三个步骤来抑制dsDNA的结合。首先,AcrIIA2可以阻断PAM的识别;其次,AcrIIA2占据了dsDNA的结合位点;最后,AcrIIA2通过限制HNH结构域的构象变化来抑制dsDNA的结合。  目前,SpyCas9蛋白作为基因组编辑工具被广泛应用于DNA领域的基因编辑,克服了传统基因编辑技术步骤繁琐、耗时长、效率低等缺点,以其较少的成分、便捷的操作以及较高的效率满足了大多数领域的基因编辑需求,并有着潜在的临床应用价值。但是CRISPR-SpyCas9基因编辑系统也存在着一定的脱靶问题,该研究对Anti-CRISPR 蛋白抑制SpyCas9活性分子机制的阐述为控制或终止SpyCas9活性提供了新的参考和思路。有望将Anti-CRISPR 蛋白开发成新的基因编辑终止工具,实现精准基因编辑。  中国科学院生物物理所王艳丽研究员为本文的通讯作者。王艳丽课题组的刘亮为本文的第一作者,该研究得到科技部、国家自然科学基金以及中国科学院战略性先导科技专项(B类)的资助,上海同步辐射光源(SSRF)以及日本同步辐射光源SPring-8为该研究提供了重要的技术支持。  图注:AcrIIA2-SpyCas9-sgRNA三元复合物的晶体结构  (A)SpyCas9的结构域。  (B)AcrIIA2-SpyCas9-sgRNA三元复合物的结构展示图。