《王艳丽组揭示噬菌体防御CRISPR-SpyCas9的分子机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-01-08
  • 2018年12月31日,《Molecular Cell》杂志在线发表了中国科学院生物物理研究所王艳丽课题组在CRISPR-Cas系统取得的最新研究进展。标题为“Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race”。该研究工作成功解析了Anti-CRISPR 蛋白 AcrIIA2与Streptococcus pyogenes Cas9 (SpyCas9) 蛋白及single-guide RNA (sgRNA) 的三元复合物3.3 埃的晶体结构,并结合体内和体外的功能实验,系统地阐述了噬菌体运用Anti-CRISPR 蛋白防御CRISPR-SpyCas9系统的分子机制。王艳丽课题组一直致力于CRISPR-Cas系统抗病毒作用机理的研究,前期研究揭示了一系列重要的CRISPR-Cas系统的作用机理 (Nature 2014, Cell 2015, Cell Res. 2016, Cell 2017a, Cell 2017b, Mol. Cell 2017, Cell 2018);该工作是王艳丽课题组首次在Anti-CRISPR蛋白防御CRISPR-Cas系统作用机理的研究上取得的重大突破。  CRISPR/Cas系统是古菌和细菌的抵抗病毒和质粒侵染的重要免疫防御系统。CRISPR-Cas系统划分为两大类,第一大类CRISPR-Cas系统由多亚基组成的效应复合物发挥功能;第二大类是由单个效应蛋白(如Cas9, Cas12a, Cas12b, Cas13等)来发挥功能。其中,Cas9, Cas12a, Cas12b均具有RNA介导的DNA核酸内切酶活性, Cas13a具有RNA介导的RNA核酸酶活性。面对细菌的免疫系统(CRISPR-Cas),噬菌体也相应的进化出了自己的防御系统(Anti-CRISPR)。2017年首次发现了Listeria monocytogenes 噬菌体来源的四个Anti-CRISPR蛋白,AcrIIA1, AcrIIA2, AcrIIA3 和AcrIIA4。研究发现AcrIIA2和AcrIIA4蛋白在细胞内能够抑制SpyCas9的基因编辑活性。随后的结构和功能研究表明AcrIIA4通过阻断DNA与SpyCas9的结合来抑制SpyCas9的功能,然而AcrIIA2抑制SpyCas9活性的分子机制一直未能阐述清楚。  在该研究中,研究人员首先通过生化实验发现AcrIIA2只与结合有sgRNA的SpyCas9二元复合物结合,并不与自由状态下的SpyCas9结合,也并不与同时结合有sgRNA和dsDNA的SpyCas9三元复合物结合。为了研究AcrIIA2直接抑制SpyCas9活性的分子机制,研究人员利用X-ray晶体学的方法成功解析了AcrIIA2-SpyCas9-sgRNA的三元复合物晶体结构 (3.3 埃)。结构发现AcrIIA2是由三个α螺旋及一个β折叠组成的紧凑结构,它结合在SpyCas9的一个带正电荷的凹槽区域。该区域由PI, HNH, WED, 和 REC2 结构域形成。PI结构域上R1333和R1335是识别dsDNA的PAM序列的关键氨基酸,AcrIIA2通过与R1333和R1335形成稳固的氢键从而阻断SpyCas9对PAM序列的识别,进而阻止SpyCas9对dsDNA的结合。而AcrIIA2的α1螺旋与HNH结构域的相互作用可以锚定HNH结构域,阻止其结合DNA必须发生的构象变化。另外,通过结构比对分析发现AcrIIA2有大量的带负电荷的氨基酸占据着dsDNA中PAM结合的位置,这表明AcrIIA2模拟带负电荷的DNA与SpyCas9结合从而阻止DNA与SpyCas9的结合。有趣的是,竞争性结合实验表明AcrIIA2并不能取代已经与SpyCas9-sgRNA结合的dsDNA, 而dsDNA也不能取代已经与SpyCas9-sgRNA结合的AcrIIA2。总之,通过结构和功能实验的证明,AcrIIA2主要通过三个步骤来抑制dsDNA的结合。首先,AcrIIA2可以阻断PAM的识别;其次,AcrIIA2占据了dsDNA的结合位点;最后,AcrIIA2通过限制HNH结构域的构象变化来抑制dsDNA的结合。  目前,SpyCas9蛋白作为基因组编辑工具被广泛应用于DNA领域的基因编辑,克服了传统基因编辑技术步骤繁琐、耗时长、效率低等缺点,以其较少的成分、便捷的操作以及较高的效率满足了大多数领域的基因编辑需求,并有着潜在的临床应用价值。但是CRISPR-SpyCas9基因编辑系统也存在着一定的脱靶问题,该研究对Anti-CRISPR 蛋白抑制SpyCas9活性分子机制的阐述为控制或终止SpyCas9活性提供了新的参考和思路。有望将Anti-CRISPR 蛋白开发成新的基因编辑终止工具,实现精准基因编辑。  中国科学院生物物理所王艳丽研究员为本文的通讯作者。王艳丽课题组的刘亮为本文的第一作者,该研究得到科技部、国家自然科学基金以及中国科学院战略性先导科技专项(B类)的资助,上海同步辐射光源(SSRF)以及日本同步辐射光源SPring-8为该研究提供了重要的技术支持。  图注:AcrIIA2-SpyCas9-sgRNA三元复合物的晶体结构  (A)SpyCas9的结构域。  (B)AcrIIA2-SpyCas9-sgRNA三元复合物的结构展示图。

相关报告
  • 《科研人员揭示一种噬菌体抵抗宿主防御的机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-08-01
    • 噬菌体是地球上数量最庞大的生物群体,是原核生物的病毒,对维持地球生态系统的有序运行意义重大。在噬菌体和宿主漫长的竞赛中,为抵御噬菌体的入侵,原核生物进化出多种系统进行防御,如限制修饰系统、CRISPR-Cas系统以及近来不断涌现的多种引起流产感染的系统等。其中,CRISPR-Cas系统是已知的唯一一种适应性免疫系统。相应地,噬菌体进化出anti-CRISPR蛋白抑制Cas蛋白的切割,从而保持自身基因组完整。 在已知的两大类六种类型CRISPR-Cas系统里,第二大类II型的Cas9效应蛋白已被广泛应用于基因编辑,具有简单、高效的优势。针对Cas9的anti-CRISPR蛋白不断被鉴定。对于anti-CRISPR抑制机理的阐释,不仅可以增进人们对噬菌体与宿主间相互竞争关系的理解,而且有助于后续基因编辑工具的开发。 中国科学院生物物理研究所王艳丽团队在《美国国家科学院院刊》(PNAS)上,在线发表了题为AcrIIC4 inhibits type II-C Cas9 by preventing R-loop formation的研究论文,揭示了噬菌体anti-CRISPR蛋白AcrIIC4抑制宿主Cas9监测复合物切割双链DNA活性的分子机制。 AcrIIC4由副流感嗜血杆菌的前噬菌体编码,对II-C型Cas9具有广谱抑制活性。体外和体内实验均表明,AcrIIC4在基因编辑过程中能高效抑制Cas9的活性,具有被开发为基因编辑调控工具的潜力。然而,由于缺乏AcrIIC4和Cas9复合物的结构,AcrIIC4发挥抑制的精确机制尚不明确,以及其能否阻止DNA结合方面存在争议。 该研究解析了Cas9、向导RNA(sgRNA)、AcrIIC4和靶标DNA之间的一系列结构,发现AcrIIC4结合到Cas9的两个识别结构域REC1和REC2之间,并与sgRNA建立了广泛相互作用,可限制住柔性较大的REC2结构域的运动(图A)。结构比较发现,有AcrIIC4存在时,靶标链(TS)和sgRNA只能形成七个碱基的异源双链配对,R-loop的形成被阻止在中间步骤。这与生化实验证据相印证:AcrIIC4能降低但不完全阻止Cas9与DNA的结合。进一步的实验证明,AcrIIC4能阻止双链DNA在PAM远端解链(图B),并对TS-guide RNA结合通道的形成有影响,从而阻止完整R-loop的形成,终止后续别构激活(图C)。此外,AcrIIC4抑制II-C型Cas9不同同源蛋白的能力差异较大。该研究通过一级序列和三维结构比对,并结合体外切割实验,证明了sgRNA的第一个茎环长度的不同是导致这种差异的原因。上述研究对在不同Cas9编辑系统中应用AcrIIC4具有指导意义。 研究工作得到国家自然科学基金、中国科学院战略性先导科技专项(B类)和中国科学院青年创新促进会等的支持。生物物理所生物成像中心和科学研究平台分别为电镜数据收集和静态光散射实验提供了技术支持。
  • 《Nature:揭示噬菌体克服细菌免疫防御新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-14
    • 我们习惯于认为免疫系统是一个独立的实体,几乎是一个独立的器官,但事实要复杂得多。近年来的突破表明单个细菌细胞拥有自己的自主、先天免疫系统,能够识别、定位和处理入侵者。 在一项新的研究中,来自以色列魏茨曼科学研究所、美国丹娜法伯癌症研究院和哈佛医学院的研究人员揭示了病毒克服细菌细胞免疫系统的方式以及这一过程中固有的一种神秘信号分子的化学成分。相关研究结果近期发表在Nature期刊上,论文标题为“Viruses inhibit TIR gcADPR signalling to overcome bacterial defence”。论文通讯作者为魏茨曼科学研究所分子遗传学系的Rotem Sorek博士和丹娜法伯癌症研究院的Philip J. Kranzusch博士。 导致细菌细胞提高它们的免疫防御的病毒被称为噬菌体。噬菌体的工作方式是将它们的DNA注入细菌,操纵细菌细胞将它们复制数十次。接着,新产生的噬菌体杀死了细菌,让它们爆裂,去猎杀附近的其他细菌细胞。然而,细菌并非毫无防备,它们采用了自主免疫系统来对抗这种威胁。 Sorek实验室以前的研究已表明,一种叫做TIR的免疫蛋白片段负责识别噬菌体入侵,一旦检测到噬菌体,TIR就会产生一种神秘的信号分子来触发免疫反应。TIR最初是在植物和动物的免疫系统中发现的,但是Sorek及其研究团队能够证实细菌中也存在类似的机制。然而,这个神秘的信号分子仍然没有被发现。 在这项新的研究中,Sorek团队发现了噬菌体如何能够克服TIR免疫。当研究一组非常相似的噬菌体时,他们吃惊地发现,虽然TIR免疫确实免受其中的一些噬菌体感染,但是其他噬菌体却被证明是胜利者,并成功杀死了细菌。在研究这些胜利的噬菌体时,他们发现它们包含一个特殊的基因,它所编码的蛋白中和TIR免疫,从而使这些噬菌体占据了上风。 当这些作者探究这种如今称为Tad1的蛋白时,他们发现该蛋白在TIR产生这种信号分子后立即捕获了该信号分子。Sorek说,“就好像该蛋白迅速吞下了这种信号分子,不让免疫系统看到它哪怕一丝一毫。这种免疫规避机制从未在任何已知的病毒中出现过。” 这些作者随后意识到,如果这种信号分子被锁在这种噬菌体蛋白内,他们也许能够通过查看这种蛋白的结构来“看到”它。他们能够通过晶体学确定这种信号分子的空间结构和化学成分。 Sorek喃喃自语,“我们寻找这种神秘的信号分子已经好几年了。具有讽刺意味的是,如果没有噬菌体的协助,我们不可能找到它。我们发现了一种新的方式,通过这种方式病毒可以使依赖信号分子的免疫系统失去活性。这种免疫系统并不是细菌独有的---它们存在于植物和人类的细胞中。” 了解噬菌体如何能够适应和进化可能有助于我们更好地对抗细菌免疫系统。Sorek说,“如果感染我们身体的病毒使用与我们在噬菌体中发现的Tad1完全相同的机制,我们将不会感到吃惊。”如果是这样的话,那么它可能会对我们保护自己不受那些诡计多端的病毒侵害的能力产生直接影响。 参考资料: Azita Leavitt et al. Viruses inhibit TIR gcADPR signaling to overcome bacterial defense, Nature, 2022, doi:10.1038/s41586-022-05375-9.