机械超材料代表了一类新兴材料,其性能受其成分和结构的控制,从而能够创造出具有极端机械性能的轻质材料。然而,迄今为止,对其对损伤和缺陷的耐受性(通常称为断裂韧性)的理解和量化仍然难以捉摸,部分原因是难以制造和表征具有足够多晶胞的超材料。对于几乎所有结构应用,机械设计的限制因素通常是韧性而不是强度或模量。
增材制造的最新进展使得能够创建特征尺寸跨越多个数量级的大块机械超材料成为可能。优异的机械性能,例如低密度同时具有高强度,证明了它们在结构应用中的潜力。为了开发坚韧和耐损伤的超材料,对其断裂力学和相关设计参数的基本了解至关重要。在连续弹性材料中,在裂纹尖端附近建立了称为K场的应力分布,由称为应力强度因子的标量参数描述。当该应力强度因子达到临界值时,会发生快速、不稳定的裂纹扩展。这个值通常被称为材料的断裂韧性。以前的大多数工作都假设这些想法扩展到3D机械超材料,并使用传统的实验和理论方法来估计断裂韧性。
与普遍看法相反,来自剑桥大学Vikram Sudhir Deshpande教授发现标准断裂测试方案和应力强度因子不足以表征基于桁架的3D弹性超材料的韧性。事实上,迄今为止报告的值可能导致对超材料韧性高估近一个数量级。这种偏差背后的关键原因可归因于超材料中微观结构的离散性,包括所谓的T应力(与裂纹平行的应力)在控制断裂中的放大作用。作者发现,在制造过程中诱发的小裂纹的存在会显着影响超材料的断裂韧性。有趣的是,他们还发现,3D超材料中平面应变韧性的等效值只能通过消除试样表面效应的嵌入式裂纹试样来测量,这与使用全厚度裂纹的传统断裂测试方法相矛盾。通过数值和渐近分析的结合,作者将弹性断裂力学的思想扩展到基于桁架的超材料,并开发了一个通用的测试和设计协议。这个框架可以在其他离散的弹性-脆性固体中形成断裂角色塑造的基础,在这些固体中断裂韧性的概念已知是可以分解的。相关研究成果以题为“The toughness of mechanical metamaterials”发表在最新一期《Nature Materials》上。香港城市大学陆洋对此发表了评述文章,以题为“Design criteria for tough metamaterials”发表在最新一期《Nature Materials》上。