《又一篇Science!上海交大、上硅所等在无机塑性半导体领域取得重大突破》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-08-04
  • 7月31日(北京时间),上海交通大学与中国科学院上海硅酸盐研究所等单位合作,在无机塑性半导体领域取得重大突破,相关成果以“Exceptional plasticity in the bulk single crystalline van der Waals semiconductor InSe”为题发表在Science上(Science, 2020, 369(6503):542-545)。该研究发现,二维结构范德华半导体InSe在单晶块体形态下具有超常规的塑性和巨大的变形能力,既拥有传统无机非金属半导体的优异物理性能,又可以像金属一样进行塑性变形和机械加工,在柔性和可变形热电能量转换、光电传感等领域有着广阔的应用前景。史迅教授/研究员、Jian He教授、陈立东研究员为本文通讯作者;魏天然助理教授、金敏教授、王悦存副教授为共同第一作者。该研究参加单位包括上海交通大学、中国科学院上海硅酸盐研究所、上海电机学院、西安交通大学、中国科学院宁波材料所、Clemson University。

    当前,柔性电子领域蓬勃发展,推动着社会的信息化和智能化进程。作为柔性电子器件的核心,半导体材料期望具有良好的电学性能与优异的可加工和变形能力。然而,现有的无机半导体尽管电学性能优异,但通常具有本征脆性,其机械加工和变形能力较差;而有机半导体虽具有良好的变形能力,但电学性能普遍低于无机材料。开发兼具良好电学和力学性能的新型半导体有望推动柔性电子的迅速发展。

    史迅与陈立东等开创性地提出无机塑性新型半导体新概念,在具有优异电学性能的无机半导体中实现良好可加工和变形能力,将有机材料和无机材料的优点合二为一。2018年,他们发现了首个室温塑性半导体材料——Ag2S,并揭示了其塑性变形机制(Nature Mater. 2018, 17: 421);随后通过电性能的优化使其同时具有良好柔性/塑性和热电性能(Energy Environ. Sci. 2019, 12: 2983),开辟了无机塑性半导体和柔性/塑性热电材料新方向。

    受Ag2S准层状结构与非局域、弥散化学键特性的启发,该研究聚焦一大类包含范德华力的二维结构材料,并在其中发现了具有超常塑性的InSe晶体。对二维材料而言,单层或薄层样品很容易发生弹性变形,表现出一定的柔性;然而,当厚度增大时,二维材料通常因其较弱的层间作用力极易发生解理,因此块体形态下的变形能力很差。而该研究发现,不同于多晶形态下的脆性行为,InSe单晶二维材料在块体形态下可以弯折、扭曲而不破碎,甚至能够折成“纸飞机”、弯成莫比乌斯环,表现出罕见的大变形能力(图1)。非标力学试验结果进一步证实了材料的超常塑性,其压缩工程应变可达80%,特定方向的弯曲和拉伸工程应变也高于10%。

    图1. InSe单晶块体的超常塑性。(A)晶体结构;(B-D)样品可折叠或弯曲成“纸飞机”、莫比乌斯环、螺旋圈等各种形状而不破裂;(E)沿c轴与(F)垂直c轴方向压缩的应力-应变曲线及压缩前后样品照片。

    精细结构表征和原位微纳压缩实验结果表明,InSe单晶块体的塑性变形主要来自层间的相对滑动和跨层的位错滑移(图2A-C),进一步研究发现InSe的变形能力和塑性与其特殊的晶体结构和化学键密切相关。首先,InSe的面内弹性模量仅约53 GPa,远低于绝大多数二维晶体材料(图2D),表明层内本质非常“柔软”,较易发生弹性弯曲。更重要的是,InSe具有独特的层间相互作用,如图2E所示,InSe(001)面之间相对滑移能垒极低,而解理能显著高于其他二维材料以及典型的脆性材料,表明InSe易滑移难解理。差分电荷密度(图2F)与晶体轨道分布密度(COHP)(图2G)计算表明InSe相邻层间除了Se-Se范德华力外,还存在着In-Se之间的长程库伦力。这些多重、非局域的较弱作用力一方面促进层间的相对滑移,另一方面又像“胶水”一样把相邻的层“粘合”起来,抑制材料发生解理,同时保证了位错的跨层滑移。

    图2 InSe塑性变形机制与机理。(A)刃位错的反傅里叶变换扫描透射暗场像(IFT-DF-STEM);(B-C)扫描电镜(SEM)下原位压缩实验,揭示了层间滑动与跨层滑移;(D)常见六方结构二维材料的面内杨氏模量;(E)滑移能与解理能;(F)差分电荷密度与(G)晶体轨道哈密顿分布密度(COHP),间接佐证了层间长程作用力的存在。

    基于InSe单晶特殊的力学性质和化学键特性,该工作提出了一个评价和预测(准)二维材料变形能力的X 因子:X = Ec/Es (1/Ein),其中Ec是解理能,Es是滑移能,Ein是沿着滑移方向的杨氏模量。具有高解理能、低滑移能、低杨氏模量的材料有望具有良好的塑性变形能力。该判据很好地解释了目前已发现的两种无机塑性半导体Ag2S和InSe,也为其他新型塑性和可变形半导体的预测和筛选提供了理论依据(图3)。

    图3 不同材料的变形因子与禁带宽度图谱

    该研究得到了国家重点研发计划、国家自然科学基金和上海市科委的资助和支持。

    复制下方链接或点击阅读全文查看论文。

    论文链接:

    https://science.sciencemag.org/content/369/6503/542

    DOI:10.1126/science.aba9778

  • 原文来源:https://news.sjtu.edu.cn/jdzh/20200803/128979.html
相关报告
  • 《上海交大团队在量子精密测量领域取得突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-06-02
    • 上海交通大学物理与天文学院及李政道研究所张卫平教授团队与华东师范大学陈丽清、袁春华教授合作在量子精密测量研究方面取得重要进展,实现了高损耗下的量子干涉仪噪声压缩保护。 该团队在干涉仪路径损耗高达96%的情况下,依然展示了量子优势,实现了相位测量灵敏度突破标准量子极限。该方法的重要创新在于通过相干激光与量子压缩资源的优化分配,使得干涉仪抗损耗能力与光量子噪声压缩的量子优势同时得以保持,为发展损耗兼容、噪声抑制的可实用量子光学干涉技术提供了新方法。 相关研究成果近来以“Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation”为题发表在《物理评论快报》(Physical Review Letters)上。 光学干涉仪作为高精度相位测量的重要工具,已广泛应用于科学探索、工业与**领域。激光的发明,光的相干性导致了光学干涉仪的革命性发展。然而,激光起源于真空放大,光子统计展现泊松分布,其光子涨落使得激光干涉仪的相位灵敏度受限于标准量子极限(SQL)。突破激光干涉仪的SQL成为了量子光学与量子计量学领域的重大科学问题。 利用量子光学技术能够改变光场的泊松分布,产生光的压缩态。将光的压缩态注入激光干涉仪中,可实现对相位测量的标准量子极限突破。然而,光的压缩态非常脆弱,极易受到外界环境损耗的退相干性破坏,从而不能有效地展现其量子优势。在实际应用中,激光干涉仪不可避免受环境及元器件的损耗影响,导致这种量子压缩技术无法有效发挥量子增强作用。在干涉仪中怎样保护光的压缩特性,是量子光学领域长期关注的重要问题。 针对这一问题,该项研究利用原子偏振自旋转原理产生的光压缩态注入到激光线性干涉仪中,通过调节激光与压缩光的混合配比,将更多的激光注入损耗大的干涉臂,实现相位敏感测量。同时,在损耗小的干涉臂保留更多的压缩光,保护量子噪声压缩特性不被损耗破坏,从而实现一种高灵敏、低噪声、损耗兼容为一体的量子干涉新技术。 该项工作获得了科技部、国家自然科学基金委、上海市科委与发改委的资助。 资源优化的量子干涉仪实现量子噪声压缩保护原理  
  • 《Nature&Science:2021年金属领域重大突破性进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 在古代,金属材料一般用在驷马战车以及兵器等领域,在那个时代,即使铸造后的合金,其性能就能满足各方面的需求。但在今天这个时代,尤其是在航空航天等高端领域,金属材料的力学性能则面临着巨大挑战。随着新一代航空发动机以及航天领域对材料性能的要求进一步提高,当前绝大多数材料各方面的性能急需提高。接下来,笔者盘点一下2021年金属材料发表在Nature&Science的重量级成果。 1. 香港城市大学刘锦川院士团队:微成分浓度调节的新型3D打印设计,实现合金组织调控; 与传统工艺相比,3D打印整个了多步工序,可以很好地实现各种复杂零部件的自由制备。然而,无论是新材料还是新加工技术的创新,如果没有协同结合,都很难成功。鉴于此,来香港城市大学的刘锦川教授团队开发以一种微成分浓度调节的3D打印新工艺,成功解决了传统3D打印钛合金晶粒粗大,性能差的难题。这种方法属于一种原位设计方法,通过激光-粉末床融合使合金在成分浓度上进行调制。该文对两种不同合金熔体Ti – 6Al – 4V和少量316L不锈钢合金的进行局部均匀化,就能够利用316L中所含的β稳定元素对Ti-6Al-4V基体进行微米级成分浓度调制。经过成份调制后的合计主要由亚稳β基体和纳米级α'片层双相结构组成。这种组织展示了约1.3GPa的抗拉强度,约9%的延展性和优异的加工硬化速率(>300MPa)。这种方法为特定结构和功能应用的成份浓度调制异质合金设计创造了一条新途径,具有广阔的前景。 2.金属所卢磊团队:梯度纳米位错胞结构导致高强高塑的高熵合金; 由于迄今为止所报道的高熵合金(HEAs)的基本塑性变形特征和机理与传统金属相似,所以HEAs的强度和塑性之间存在矛盾。在传统金属中,材料的塑性由线缺陷和面缺陷,例如位错、孪晶以及晶界的运动提供,而强度则需要有强有力的障碍物阻碍这些缺陷的运动,例如全位错以及孪晶与不同结构缺陷(如高角度晶界(HAGBs)或孪晶界(TBs))相关的相互作用,导致它们的运动受阻。与传统合金不同的是,高熵合金中存在化学短程有序(SRO)和空间可变层错能(SFE)在原子尺度上的局部不均匀性,导致一些不寻常的位错行为,例如变化的位错滑移模式,以及对位错运动/积累摩擦阻力的增强。这种现象主要是由于纳米尺度(通常<3 nm)的局部浓度波动或局部SRO所致,一般认为其有助于改善材料的力学性能。到目前为止,尽管很多文献报道了在高熵合金中同时提高强塑性的方法,但本文提出的则为一种新的策略,机理上不同于以前的策略。多主元高熵合金的强度提高往往伴随塑性的降低,这种强塑性相互矛盾主要来源于金属材料的塑性变形机理。即材料中的线缺陷,如位错的运动贡献塑性,但位错的堆垛与塞积则贡献强度。近期,金属所沈阳材料科学国家研究中心卢磊研究员团队与美国田纳西大学、橡树岭国家实验室、阿贡国家实验室的科学家合作在这一科学难题研究方面取得重要进展。研究人员通过小角度往复扭转梯度塑性变形技术,在Al0.1CoCrFeNi高熵合金中引入梯度位错胞稳定结构,同时保持其原始晶粒的形貌、尺寸和取向不变。拉伸力学测试结果表明:这种新型结构不仅显著提高材料屈服强度,是粗晶和细晶材料的2-3倍。同时还使其保持良好的塑性和稳定均匀的加工硬化。其强塑积-屈服强度匹配明显优于文献报道中相同成分的均匀或梯度结构材料。对变形机理的研究结果表明:从材料的顶部表面到心部,合金在变形过程中存在显著的连续硬化。这种硬化特性与梯度纳米晶常规金属的变形诱导连续软化的机制有很大的不同。高熵合金中梯度位错结构在塑性变形过程中激活了不全位错--层错的相互作用,从而诱导塑性变形机制。在变形初期,纳米级别的细小层错从位错胞壁形核、然后不断滑移并扩展,其密度随拉伸应变增加而增加,逐渐演变成超高密度三维层错(和少量孪晶界)网格,直至布满整个晶粒。超高密度细小层错/孪晶的形成与位错相互作用,协调变形。一方面有效促进了其塑性变形并进一步细化初始位错结构、阻碍其它缺陷运动而贡献强度。另一方面,层错和孪晶的形成阻碍了位错的平均自由程,增加了合金内部缺陷的密度,从而导致合计超级的加工硬化,提高了整体的塑性变形。 3.发现多晶金属的晶界速度和曲率不相关; 在热处理过程中,晶界的移动速率往往和曲率存在一定的正相关关系。这是模拟多晶材料在退火过程中晶粒如何变粗的一个重要关系。之前的研究基本都假定晶界以与晶界平均曲率(κ)和晶界能量(γ)成正比的速度(v)向其曲率中心移动,二者满足v = Mκγ的关系,其中M为迁移率。但在多晶体中,上述方程并不适用,需要重新定义二者之间的关系。本文使用高能衍射显微镜在800°C退火前后测量的三维取向图,测定了镍多晶中大约52,000个晶界的速度和曲率。出人意料的是,晶界速度与曲率没有相关性。相反,我们发现边界速度和指定晶界结晶学的五个宏观参数之间有很强的相关性。速度对晶界结晶学的敏感性可能是由于缺陷介导的晶界迁移或晶界能的各向异性所致。速度和曲率之间缺乏相关性可能是由于晶界网络施加的约束,这意味着需要一个新的晶界迁移模型。 4.上海大学钟云波课题组:共晶鱼骨状结构高熵合金的多级裂纹缓冲效应及其辅助的超高强韧性; 如果外力载荷不能被弹塑性的协调运动吸收,材料内部的将会出现裂纹知道失效。但是在自然界仿生材料中,具有梯度结构的材料往往表现出非常好的韧性,使得其广泛被应用。但是,具有良好韧性的材料往往塑性较差。本工作利用定向凝固方法制备一种共晶高熵合金(EHEA),成功地协调了裂纹容限和高延伸率之间的矛盾。该凝固合金具有梯度组织的鱼脊骨状结构,能够有效的逮捕裂纹并缓冲裂纹的扩展。这种效应在大量的低变形组织中引导稳定、持久的晶体形核和多个微裂纹的生长。相邻动态应变硬化特征的梯度分级缓冲有助于裂纹避免灾难性增长和渗透。自缓冲梯度鱼脊骨状结构材料具有超高的均匀拉伸伸长率(~50%),是传统的非缓冲EHEAs的3倍,同时不牺牲强度。 5.德国Shan Shi教授:宏观梯度网络纳米材料让金属又轻又强; 梯度结构在自然界中和工程化应用中非常常见。这种结构不尽具有优异的力学性能,还具有某些特定的功能。这体现在自然界中珍珠质或珐琅的断裂韧性,以及人造建筑的微尺度网络结构。在纳米尺度构建梯度结构有望进一步增强合金或者系统,但以这种方式构建的宏观体包含大量的支柱,需要一系列可扩展的制备方案,工艺复杂,成本高昂。在这项工作中,利用由去合金化的自组织过程可以很好的制成宏观层次网络纳米材料。这种共梯度结构在给定的固体分数下提高了合金的强度和刚度,并通过脱合金降低了固体分数。利用力学和原子模拟杠杆定律,可以从根本上揭示观测到的结果及其原理。由于力学杠杆定律和揭示了纳米尺度网络结构中梯度结构的系统性好处,本文所提出的材料方法可能成为未来轻质结构材料的发展提供新途径。 6.卢柯院士:解决了高温下金属中高原子扩散率带来的不稳定性的技术难题; 金属中的原子在加热时可以发生扩散,这种特性也是组织调控在热加工或者热处理过程中得以调控的基础。但是对于高温材料的发展来说,快速的原子扩散速率使得材料在服役过程组织和性能不稳定,又是高温材料的发展瓶颈。目前为止,单晶和重金属合金化是组织原子扩散的重要方法,但是这两种在实际应用中存在一定的局限性,在均匀的高温受热时原子的扩散仍然十分快速。到目前为止,有效抑制高温时原子扩散一直是重大的挑战。近日,沈阳金属研究所的卢柯院士在纳米晶Al-Mg合金中发现了受限晶体结构(Schwarz crystal structure),发现其可以有效的抑制高温处理时Al3Mg2 的析出,并阻碍晶界的迁移,从而抑制晶粒的粗化。更难能可贵的时,这种受限晶体结构在熔点之前温度基本能稳定的存在,其可以把晶界扩散的速率降低约7个数量级左右。这种受限晶体结构可以推广至其它合金体系,从而大大提高材料的高温使用温度和服役性能,例如蠕变,疲劳等。 7.吕昭平团队:一种生产高强高塑大块钢的简易方法; 超细晶钢具有非常优异的强度和断裂韧性,是非常重要的轻质和能源保护性材料。传统生产超细晶钢主要依赖于扩散性相变。但是超细晶钢通常展现出非常有限的加工硬化,从而其塑性非常差。基于此,来自英国谢菲尔德大学的W. Mark Rainforth和北科大的吕昭平教授团队强强联合,报道了一种大规模生产具有高强度和大塑性超细晶钢的新途径。本文以孪晶诱导塑性钢Fe–22Mn–0.6C为研究对象,通过往钢中掺杂3%Cu和4%Cu,利用共格无序富铜相的颗粒内纳米沉淀法(在30秒内)对再结晶结晶过程进行调控。快速而丰富的纳米沉淀物不仅阻止了新再结晶亚微米晶粒的生长,而且通过Zener钉扎机制增强了所得到的UFG结构的热稳定性。此外,由于其完全的共格性和无序性质,在外力载荷下,析出物与位错表现出微弱的相互作用。这种方法能够制备完全再结晶的超细晶结构,其晶粒尺寸为800±400纳米,而没有引入有害的晶格缺陷,如脆性颗粒和分离的边界。与未添加Cu的钢相比,超细晶结构的屈服强度提高了一倍,达到710MPa左右,具有均匀的延展性,其抗拉强度约为2000Mpa。这种晶粒细化的概念应该可以扩展到其他合金系统,制造过程可以很容易地应用到现有的工业生产线。 8.美国橡树岭国家实验室Ying Yang和Easo P. George:双重功能的纳米析出物同时强韧化Fe–Ni–Al–Ti体系中熵合金; 单相FCC结构的中熵或者高熵合金通常具有优异的塑性以及韧性,但是是非强度非常低。提高晶界,孪晶界密度或者引入固溶原子以及析出物都是非常有效的强化方式。通过orwan机制,第二相硬质粒子可以有效阻碍变形时位错的运动,从而提高材料的强度。但在之前的一些文献中报道,第二相粒子不仅能强化材料外,还可以抑制相变的发生,尤其是马氏体相变。本工作利用析出性强化Fe–Ni–Al–Ti中熵体系合金,展示了一种在单一合金中结合第二项强化和阻碍相变的具有双重功能的策略,极大的提高了材料的强塑性。本合金中调控出的Ni3Al (L12)型纳米沉淀物除了提供常规的基体强化作用外,还调节了其从fcc-奥氏体到体心立方(bcc)马氏体的转变,限制其在淬火后通过转变温度保持亚稳态fcc基体。在随后的拉伸试验中,基体逐渐转变为bcc-马氏体,使强度、加工硬化和塑性显著提高。这种纳米沉淀物的使用利用了沉淀强化和相变诱导塑性之间的协同作用,从而同时提高了拉伸强度和均匀延伸率。研究结果表明,协同变形机制可以通过改变沉淀物特征(如大小、间距等),以及相变的化学驱动力,在需要的时候被有意激活,以优化强度和延展性。