《上海交大团队在量子精密测量领域取得突破》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-06-02
  • 上海交通大学物理与天文学院及李政道研究所张卫平教授团队与华东师范大学陈丽清、袁春华教授合作在量子精密测量研究方面取得重要进展,实现了高损耗下的量子干涉仪噪声压缩保护。

    该团队在干涉仪路径损耗高达96%的情况下,依然展示了量子优势,实现了相位测量灵敏度突破标准量子极限。该方法的重要创新在于通过相干激光与量子压缩资源的优化分配,使得干涉仪抗损耗能力与光量子噪声压缩的量子优势同时得以保持,为发展损耗兼容、噪声抑制的可实用量子光学干涉技术提供了新方法。
    相关研究成果近来以“Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation”为题发表在《物理评论快报》(Physical Review Letters)上。
    光学干涉仪作为高精度相位测量的重要工具,已广泛应用于科学探索、工业与**领域。激光的发明,光的相干性导致了光学干涉仪的革命性发展。然而,激光起源于真空放大,光子统计展现泊松分布,其光子涨落使得激光干涉仪的相位灵敏度受限于标准量子极限(SQL)。突破激光干涉仪的SQL成为了量子光学与量子计量学领域的重大科学问题。
    利用量子光学技术能够改变光场的泊松分布,产生光的压缩态。将光的压缩态注入激光干涉仪中,可实现对相位测量的标准量子极限突破。然而,光的压缩态非常脆弱,极易受到外界环境损耗的退相干性破坏,从而不能有效地展现其量子优势。在实际应用中,激光干涉仪不可避免受环境及元器件的损耗影响,导致这种量子压缩技术无法有效发挥量子增强作用。在干涉仪中怎样保护光的压缩特性,是量子光学领域长期关注的重要问题。
    针对这一问题,该项研究利用原子偏振自旋转原理产生的光压缩态注入到激光线性干涉仪中,通过调节激光与压缩光的混合配比,将更多的激光注入损耗大的干涉臂,实现相位敏感测量。同时,在损耗小的干涉臂保留更多的压缩光,保护量子噪声压缩特性不被损耗破坏,从而实现一种高灵敏、低噪声、损耗兼容为一体的量子干涉新技术。
    该项工作获得了科技部、国家自然科学基金委、上海市科委与发改委的资助。

    资源优化的量子干涉仪实现量子噪声压缩保护原理

     

相关报告
  • 《突破 | 上海交大科研团队在微机械频率梳技术上取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-04-09
    • 光学频率梳是光谱呈等间距“梳状”分布的激光系统,在超精密时间、频率计量领域具有高技术应用价值。而基于微机电系统(MEMS)的非线性谐振器因其多波混频和频谱展宽,也可用于构建振动频谱呈等间距“梳状”分布的机械频率梳信号,且相较光学频率梳具有芯片化、集成化的优点(图一)。但目前机械频率梳的力学设计还存在较大局限性。其一,微机械谐振器在远离共振频率时通常难以激发,导致其频率梳信号的频谱过窄、梳齿稀疏;其二,梳齿之间缺乏锁频机制,导致其频率成分之间的抖动杂乱无序、时域信号稳定性差,严重制约了在精密时钟和传感领域的应用前景。 图一、微机械频率梳概念示意图 图二、微机械谐振器、动力学模型、超宽谱高稳定频率梳 针对上述问题,研究团队提出了一种基于强模态耦合和注入锁定机制的力学设计方法,实验验证了该微机械频率梳超宽频谱、同步锁频的动力学行为和优异性能参数(图二)。团队突破了现有弱耦合MEMS传感器的主流设计思路,设计了“平动-扭转”强模态耦合支撑梁结构来大幅增强耦合强度,建立了耦合能量传递速率模型,揭示了其与频率梳梳齿间隔的线性正相关关系,以此为基础提出了宽频谱微机械频率梳。在实验上,实现了多簇高次谐波频率梳的激发,再通过相邻簇梳齿之间的频率调谐和逐渐对齐,发现了梳齿之间因注入锁定而突然合并的动力学行为,从而引发自锁频机制和梳齿级联。在锁频范围内,揭示了频率梳梳齿随系统参数变化而同步有序变化,所有梳齿都锁定为严格整数倍关系,梳齿频率抖动量级、艾伦方差、相位噪声都降低了1-2个数量级,实现了超10倍频程的超连续宽谱、自锁频微机械频率梳,且其时域信号具有恒定零相差(图三)。 图三、无相差、高稳定时域信号 该研究首次实现了自锁频、高稳定的宽谱微机械频率梳,揭示了超宽谱级联、超稳定频率、超低相位噪声、恒定零时域相差等丰富的动力学特性,对发展芯片级超精准时钟、超精密传感都具有重要理论意义。
  • 《又一篇Science!上海交大、上硅所等在无机塑性半导体领域取得重大突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-04
    • 7月31日(北京时间),上海交通大学与中国科学院上海硅酸盐研究所等单位合作,在无机塑性半导体领域取得重大突破,相关成果以“Exceptional plasticity in the bulk single crystalline van der Waals semiconductor InSe”为题发表在Science上(Science, 2020, 369(6503):542-545)。该研究发现,二维结构范德华半导体InSe在单晶块体形态下具有超常规的塑性和巨大的变形能力,既拥有传统无机非金属半导体的优异物理性能,又可以像金属一样进行塑性变形和机械加工,在柔性和可变形热电能量转换、光电传感等领域有着广阔的应用前景。史迅教授/研究员、Jian He教授、陈立东研究员为本文通讯作者;魏天然助理教授、金敏教授、王悦存副教授为共同第一作者。该研究参加单位包括上海交通大学、中国科学院上海硅酸盐研究所、上海电机学院、西安交通大学、中国科学院宁波材料所、Clemson University。 当前,柔性电子领域蓬勃发展,推动着社会的信息化和智能化进程。作为柔性电子器件的核心,半导体材料期望具有良好的电学性能与优异的可加工和变形能力。然而,现有的无机半导体尽管电学性能优异,但通常具有本征脆性,其机械加工和变形能力较差;而有机半导体虽具有良好的变形能力,但电学性能普遍低于无机材料。开发兼具良好电学和力学性能的新型半导体有望推动柔性电子的迅速发展。 史迅与陈立东等开创性地提出无机塑性新型半导体新概念,在具有优异电学性能的无机半导体中实现良好可加工和变形能力,将有机材料和无机材料的优点合二为一。2018年,他们发现了首个室温塑性半导体材料——Ag2S,并揭示了其塑性变形机制(Nature Mater. 2018, 17: 421);随后通过电性能的优化使其同时具有良好柔性/塑性和热电性能(Energy Environ. Sci. 2019, 12: 2983),开辟了无机塑性半导体和柔性/塑性热电材料新方向。 受Ag2S准层状结构与非局域、弥散化学键特性的启发,该研究聚焦一大类包含范德华力的二维结构材料,并在其中发现了具有超常塑性的InSe晶体。对二维材料而言,单层或薄层样品很容易发生弹性变形,表现出一定的柔性;然而,当厚度增大时,二维材料通常因其较弱的层间作用力极易发生解理,因此块体形态下的变形能力很差。而该研究发现,不同于多晶形态下的脆性行为,InSe单晶二维材料在块体形态下可以弯折、扭曲而不破碎,甚至能够折成“纸飞机”、弯成莫比乌斯环,表现出罕见的大变形能力(图1)。非标力学试验结果进一步证实了材料的超常塑性,其压缩工程应变可达80%,特定方向的弯曲和拉伸工程应变也高于10%。 图1. InSe单晶块体的超常塑性。(A)晶体结构;(B-D)样品可折叠或弯曲成“纸飞机”、莫比乌斯环、螺旋圈等各种形状而不破裂;(E)沿c轴与(F)垂直c轴方向压缩的应力-应变曲线及压缩前后样品照片。 精细结构表征和原位微纳压缩实验结果表明,InSe单晶块体的塑性变形主要来自层间的相对滑动和跨层的位错滑移(图2A-C),进一步研究发现InSe的变形能力和塑性与其特殊的晶体结构和化学键密切相关。首先,InSe的面内弹性模量仅约53 GPa,远低于绝大多数二维晶体材料(图2D),表明层内本质非常“柔软”,较易发生弹性弯曲。更重要的是,InSe具有独特的层间相互作用,如图2E所示,InSe(001)面之间相对滑移能垒极低,而解理能显著高于其他二维材料以及典型的脆性材料,表明InSe易滑移难解理。差分电荷密度(图2F)与晶体轨道分布密度(COHP)(图2G)计算表明InSe相邻层间除了Se-Se范德华力外,还存在着In-Se之间的长程库伦力。这些多重、非局域的较弱作用力一方面促进层间的相对滑移,另一方面又像“胶水”一样把相邻的层“粘合”起来,抑制材料发生解理,同时保证了位错的跨层滑移。 图2 InSe塑性变形机制与机理。(A)刃位错的反傅里叶变换扫描透射暗场像(IFT-DF-STEM);(B-C)扫描电镜(SEM)下原位压缩实验,揭示了层间滑动与跨层滑移;(D)常见六方结构二维材料的面内杨氏模量;(E)滑移能与解理能;(F)差分电荷密度与(G)晶体轨道哈密顿分布密度(COHP),间接佐证了层间长程作用力的存在。 基于InSe单晶特殊的力学性质和化学键特性,该工作提出了一个评价和预测(准)二维材料变形能力的X 因子:X = Ec/Es (1/Ein),其中Ec是解理能,Es是滑移能,Ein是沿着滑移方向的杨氏模量。具有高解理能、低滑移能、低杨氏模量的材料有望具有良好的塑性变形能力。该判据很好地解释了目前已发现的两种无机塑性半导体Ag2S和InSe,也为其他新型塑性和可变形半导体的预测和筛选提供了理论依据(图3)。 图3 不同材料的变形因子与禁带宽度图谱 该研究得到了国家重点研发计划、国家自然科学基金和上海市科委的资助和支持。 复制下方链接或点击阅读全文查看论文。 论文链接: https://science.sciencemag.org/content/369/6503/542 DOI:10.1126/science.aba9778