《2017年10月Nature杂志不得不看的亮点研究》

  • 来源专题:再生医学与健康研发动态监测
  • 编译者: malili
  • 发布时间:2017-11-08
  • 【1】Nature:重磅!揭示老年人为何不能有效地燃烧储存的腹部脂肪

    doi:10.1038/nature24022

    在一项新的研究中,来自美国耶鲁大学医学院和德国波恩大学的研究人员描述了神经系统与免疫系统如何相互交谈来控制代谢和炎症。他们的发现进一步加深了科学家们对老年人为何不能够燃烧储存的腹部脂肪的理解。这种储存的腹部脂肪会提高慢性疾病风险。这项研究也指出靶向这种问题的潜在治疗方法。相关研究结果于2017年9月27日在线发表在Nature期刊上,论文标题为“Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing”。论文通信作者为耶鲁大学医学院比较医学与免疫生物学教授Vishwa Deep Dixit。

    老年人,不管他们的体重如何,都具有增加的腹部脂肪。然而,当老年人需要消耗能量时,他们并不会像年轻人一样有效地燃烧储存在脂肪细胞中的能量,从而导致有害的腹部脂肪堆积。导致脂肪细胞中的这种不反应性的内在原因是未知的。

    在这项研究中,Dixit和他的来自美国田纳西州大学健康科学中心和德国波恩大学的合作们着重关注被称作巨噬细胞的特定免疫细胞。巨噬细胞通常参与控制感染。Dixit实验室发现一种新的巨噬细胞驻留在腹部脂肪的神经上。这些神经相关巨噬细胞随着年龄的增加会产生炎症,而且不允许被称作化学信使的神经递质正确地发挥功能。

    【2】Nature:在发现20多年后,终于破解乳腺癌风险基因之谜

    doi:10.1038/nature24060

    在科学家们发现BRCA1基因突变让女性容易患上乳腺癌20多年之后,在一项新的研究中,来自美国耶鲁大学、哥伦比亚大学和科罗拉多州立大学的研究人员找到允许这些突变造成破坏的分子机制。相关研究结果于2017年10月4日在线发表在Nature期刊上,论文标题为“BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing”。论文通信作者为来自耶鲁大学医学院的Patrick Sung教授、Weixing Zhao博士和哥伦比亚生物化学与分子生物物理学系的Eric C. Greene教授。

    这些研究人员说,这些发现不仅有助于人们设计抵抗乳腺癌和卵巢癌的药物,而且也有助于鉴定出有较高风险患上这些癌症的女性。

    Sung说,“大约有14000篇关于BRCA1的论文,你可能认为我们已知道关于这个基因的所有信息,但是我们并没有。”

    【3】Nature:大牛张锋教授证实CRISPR–Cas13可靶向哺乳动物细胞中的RNA

    doi:10.1038/nature24049

    早在2016年,科学家们就发现了结合和切割单链RNA而不是DNA的CRISPR蛋白(Science, doi:10.1126/science.aaf5573)。如今,在一项新的研究中,来自美国麻省理工学院(MIT)的研究人员对这种被称作CRISPR-Cas13a的系统进行调整,使之在哺乳动物细胞中发挥作用。相关研究结果于2017年10月4日在线发表在Nature期刊上,论文标题为“RNA targeting with CRISPR–Cas13”。

    在美国罗彻斯特大学开展RNA靶向CRISPR系统研究的Mitchell O’Connell(未参与这项研究)注意到,“在CRISPR之前,RNAi(RNA干扰)是调节基因表达的理想方法。但是Cas13a的重大益处之一是它似乎具有更强的特异性,而且这种系统对哺乳动物细胞而言并不是内源性的,因此你不太可能扰乱细胞中天然的转录后网络。相反,RNAi利用内源性机制开展基因敲降(gene knockdown,即抑制基因表达)。”

    在这项新的研究中,来自MIT的张锋(Feng Zhang)教授和他的同事们证实切割RNA的Cas13a酶(之前称作C2c2)能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。 这些研究人员已从多种细菌物种中寻找一种能够切割大肠杆菌报告基因的Cas13a酶。张峰教授和他的同事们着重关注来自细菌Leptotrichia wadei的Cas13a酶,这是因为经证实它最为高效地切割它的RNA靶标。

    【4】Nature:里程碑突破!鉴定出食管癌的细胞起源

    doi:10.1038/nature24269

    在一项新的研究中,来自中国福州总医院、中国科学院上海巴斯德研究所、广东腾飞基因科技有限公司、西南医科大学、天津医科大学海河临床学院、西安交通大学第一附属医院和美国哥伦比亚大学医学中心(CUMC)、罗彻斯特大学、贝勒医学院、普林斯顿大学医学中心、罗格斯大学、北卡罗莱纳州中央大学的的研究人员以小鼠和人组织为研究对象,鉴定出上消化道中能够产生巴雷特食管(Barrett's esophagus)的细胞。巴雷特食管是食管癌的前兆。这种“细胞起源”的发现有望加快开发更加精确的筛查工具和治疗巴雷特食管和食管腺癌的疗法。在美国,食管腺癌是增长得最快的一种癌症。相关研究结果于2017年10月12日在线发表在Nature期刊上,论文标题为“Transitional basal cells at the squamous–columnar junction generate Barrett’s oesophagus”。

    在巴雷特食管中,连接口腔和胃部的食管导管内的一些组织被肠道类似的组织替代,从而导致胃灼热和吞咽困难。大多数巴雷特食管病例源自胃食管反流病(gastroesophageal reflux disease, GERD),即胃酸慢性反流到食管下端中。一小部分巴雷特食管患者会产生食管腺癌,即一种最为常见的食管癌。

    【5】Nature:重磅!构建出潜能性比胚胎干细胞和诱导性多能干细胞更强的干细胞系

    doi:10.1038/nature24052

    在一项新的研究中,来自中国、美国、英国、日本和澳大利亚的研究人员首次在小鼠中构建出潜能扩展性干细胞(Expanded Potential Stem Cells, EPSC),它们比当前的干细胞系具有更大的发育潜力。这些干细胞具有发育中的胚胎内的最初细胞的特征,而且能够发育成任何一种细胞类型。相关研究结果于2017年10月11日在线发表在Nature期刊上,论文标题为“Establishment of mouse expanded potential stem cells”。

    干细胞能够分化为其他的细胞类型,而且现存的干细胞系对发育、疾病和治疗研究已经非常有用。然而,两种当前可用的干细胞系---胚胎干细胞(ESC)和诱导性多能干细胞(ipsC)---具有某些限制。目前,它们还不可能分化为每种细胞类型,因此在产生某些细胞类型时,它们被排除在外。

    为了发现用于研究和再生医学的新型干细胞,这些研究人员开发出一种培养处于发育最早阶段---在此时,受精卵仅分裂为4或8个细胞,仍然被认为具有一些全能性(即分化为所有细胞类型的能力)---的细胞的方法。他们猜测相比于从大约100个细胞阶段(即胚泡期)获得的ESC相比,这些细胞应当接受更少的编程。他们在一种特殊的抑制关键的发育信号和通路的培养条件下培养这些早期的细胞。

    【6】Nature:重大突破!阐明乳酸在促进肿瘤生长中的作用

    doi:10.1038/nature24057

    肿瘤从患者体内获得产生用于生长和存活的能量和构成单元(building block)所需的营养物。尽管这些营养物主要是由循环血液供应提供的,但是我们对这些营养物是什么和它们如何被使用的理解可能揭示出治疗癌症的新方法。

    在一项新的研究中,来自美国普林斯顿大学、加州大学圣地亚哥分校、新泽西罗格斯癌症研究所、罗格斯大学、罗格斯-罗伯特-伍德-约翰逊医学院和罗格斯-欧内斯特-马里奥药学院的研究人员吃惊地发现循环乳酸(circulating lactate)而不是葡萄糖是肿瘤和大多数正常组织中的主要代谢燃料来源。循环乳酸被用来产生能量,释放出葡萄糖来支持在肿瘤生长中发挥着重要作用的其他代谢功能。相关研究结果于2017年10月18日在线发表在Nature期刊上,论文标题为“Glucose feeds the TCA cycle via circulating lactate”。论文通信作者为新泽西罗格斯癌症研究所研究员Joshua D. Rabinowitz。这些发现为靶向用于癌症治疗的肿瘤代谢奠定基础。

    【7】重磅!多篇Nature揭示调节人基因表达的基因组图谱

    doi:10.1038/nature24277等

    接受美国国家卫生研究院(NIH)资助的研究人员绘制出记录人DNA中影响基因表达的序列片段的详细图谱。这种影响基因表达的方式是一个人的基因组产生可观察到的性状如头发颜色或疾病风险的一种关键的方法。对个人的基因组变异如何导致生物学差异(如人组织和细胞的健康状态和患病状态)感兴趣的科学界而言,这种图谱是一种至关重要的资源。

    这种图谱是基因型-组织表达联盟(Genotype-Tissue Expression Consortium, GTEx)的研究成果。GTEx成立的宗旨在于记录基因组变异如何影响基因开启和关闭。

    美国国家基因组研究所(National Human Genome Research Institute, NHGRI)GTEx项目主任Simona Volpi博士说,“GTEx的独特之处在于它的研究人员探究了基因组变异如何影响不同人甚至同一个人的单个组织中的基因表达。”

    【8】Nature:重磅!揭示控制体重的GDF15信号通路,有望治疗肥胖和恶病质

    doi:10.1038/nature24042

    在一项新的研究中,来自美国NGM生物制药公司(NGM Biopharmaceuticals)、XTAL生物结构公司(XTAL Biostructures)和默克研究实验室(Merck Research Labs)的研究人员深刻地揭示出一种鲜为人知的人体激素在调节体重中发挥的作用。这种被称作生长与分化因子15(Growth and Differentiation Factor 15, GDF15)的激素通常仅当身体经历急性或长期的应激(包括接触损伤组织的有毒物质,如化疗药物,或者在肥胖或癌症等慢性疾病期间)时才有活性。因此GDF15通路有望让人们开发出潜在治疗过度肥胖和体重不足相关疾病的药物。相关研究结果于2017年9月27日在线发表在Nature期刊上,论文标题为“Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15”。

    这项研究揭示了与这种激素和它的受体相关的重要分子生物学特征和机制,包括这种激素与它的受体形成的复合物的晶体结构。基于这些临床前发现,这些研究人员正在推进多种候选药物,包括NGM386。NGM386是一种经过优化的GDF15变体,可激活它的同源受体,即GDNF受体α样蛋白(GDNF Receptor Alpha-like, GFRAL),有潜力治疗肥胖。肥胖是一种日益流行的流行病,据估计在美国影响着7800万成年人。

    【9】Nature:炎症记忆促进皮肤上皮干细胞更快地修复皮肤损伤

    doi:10.1038/nature24271

    疤痕可能会消退,但皮肤会记得。在一项新的研究中,来自美国洛克菲勒大学的研究人员揭示出伤口或其他有害的触发炎症的经历会给驻留在皮肤中的上皮干细胞(epithelial stem cell, EpSC)带来持久的记忆,教导它们更快地愈合随后发生的皮肤损伤。相关研究结果于2017年10月18日在线发表在Nature期刊上,论文标题为“Inflammatory memory sensitizes skin epithelial stem cells to tissue damage”。

    这些补充皮肤外层的上皮干细胞从炎症---身体本身对损伤或感染作出的反应---中获得线索。初始的炎症让这些干细胞变得敏感:当它们再次感知炎症来临时,它们更快地作出反应。

    这项研究提供首个证据证实皮肤能够形成对炎性反应的记忆。资深作者Elaine Fuchs教授说,这一发现可能对更好地理解和治疗一系列医学疾病产生重要的影响。

    【10】Nature:重大突破!揭示血细胞释放化学信号S1P机制

    doi:10.1038/nature24053

    血源性化学信号1-磷酸鞘氨醇(sphingosine-1-phosphate, S1P)是由血细胞释放出来的,用于调节免疫功能和血管功能。但是长期以来,人们对S1P是如何释放到血液循环中的知之甚少。在一项新的研究中,来自新加坡国立大学的研究人员报道,他们在血细胞中发现了这种通路。他们的发现对治疗各种免疫疾病和血管疾病产生广泛的影响。相关研究结果于2017年10月18日在线发表在Nature期刊上,论文标题为“Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets”。

    作为一种细胞外信号,S1P是血液循环中的T细胞和B细胞等免疫细胞运输所必需的。这些免疫细胞是适应性免疫反应的一部分,而适应性免疫反应又是正常免疫反应的一个重要的组成部分。然而,它们在自身免疫疾病和炎性疾病等疾病中发挥着有害作用。利用芬戈莫德磷酸盐(fingolimod phosphate)阻断S1P信号通路已被成功地用于治疗多发性硬化症,其中芬戈莫德磷酸盐是S1P的一种类似物。(生物谷Bioon.com)

相关报告
  • 《2017年10月Cell期刊不得不看的亮点研究》

    • 来源专题:再生医学与健康研发动态监测
    • 编译者:malili
    • 发布时间:2017-11-08
    • 1.Cell:新发现挑战了存在将近100年的癌症代谢观点 doi:10.1016/j.cell.2017.09.019 图片来自Cell, doi:10.1016/j.cell.2017.09.019。 在一项新的研究中,来自美国德克萨斯大学西南医学中心(UT Southwestern)儿童医学中心研究所(CRI)的研究人员发现乳酸给生长中的肿瘤提供燃料,从而挑战了存在将近一个世纪的瓦尔堡效应(Warburg effect)。相关研究结果发表在2017年10月5日的Cell期刊上,论文标题为“Lactate Metabolism in Human Lung Tumors”。 瓦尔堡效应,以德国癌症生物学家Otto Warburg命名,具有三个主要的方面:(1)快速的葡萄糖摄取;(2)即便在氧气存在时,葡萄糖氧化发生下降;(3)将乳糖作为一种废弃物进行分泌。 在这项研究中,这些研究人员证实乳酸不仅是一种废弃物,而且也作为一种燃料被在患者和小鼠体内生长的肺癌细胞摄取。根据之前也发表在Cell期刊上的一项研究(Cell, 11 February 2016, doi:10.1016/j.cell.2015.12.034),DeBerardinis实验室已证实葡萄糖氧化在肿瘤中被激活。结合这一发现,这项新研究的结果对瓦尔堡效应学说提出挑战。 DeBerardinis说,“我们认为乳酸是促进生长、增殖,可能甚至是肺癌转移的燃料之一。癌症代谢在临床上是可操纵的,而且理解乳酸通路可能有助我们发现肺癌的治疗靶标。当作为一种成像追踪剂时,乳酸摄取可能也具有预测价值。” 2.Cell:糖尿病治疗新希望!鉴定出新型胰岛素敏感剂 doi:10.1016/j.cell.2017.09.045 2型糖尿病的根源在于胰岛素抵抗性(insulin resistance),即细胞停止对来自这种激素的指令作出反应。恢复胰岛素敏感性是预防和治疗糖尿病的一种有效的策略,但是市场上唯一销售的恢复胰岛素敏感性的药物也会促进脂质(脂肪)产生,这会导致一些严重的副作用。 在一项新的研究中,来自美国哥伦比亚大学、西奈山医学院和瑞典阿斯利康公司(AstraZeneca)的研究人员发现改善胰岛素敏感性同时避免这些副作用可能是可行的。相关研究结果于2017年10月19日在线发表在Cell期刊上,论文标题为“Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling”。 一种已被研究过的方法是抑制蛋白FOXO1。动物研究已表明当FOXO1遭受抑制时,肝脏产生更少的葡萄糖。但是正如其他的胰岛素敏感剂(insulin sensitizer)一样,抑制FOXO1也会促进脂质产生。Accili博士说,“因此,利用一种广泛作用的FOXO1抑制剂治疗胰岛素抵抗性能够导致一系列不想要的副作用,比如体重增加。不幸的是,有了FOXO1胰岛素敏感剂,你必须好坏都要承受。” 在当前的这项研究中,这些研究人员寻找一种部分抑制FOXO1的方法,从而使得葡萄糖水平下降,但是脂质水平未受影响。论文共同作者、阿斯利康公司创新药物与早期开发生物技术部门科学家Daniel Lindén说,“我们需要了解的是这两种FOXO1调节的机制如何存在差异,因此我们能够鉴定出选择性的抑制剂。” 在小鼠体内开展的研究中,Accili博士和他的同事们发现FOXO1与蛋白SIN3A一起限制脂质产生。Accili博士说,“这提示着如果我们能够发现作用于FOXO1的葡萄糖产生部分同时不会干扰SIN3A的分子,那么我们能够改善胰岛素敏感性,降低血糖,同时不会增加脂肪水平。” 3.Cell:开启癌细胞内的基因回路,触发免疫攻击 doi:10.1016/j.cell.2017.09.049 图片来自Cell期刊,doi:10.1016/j.cell.2017.09.049。 在一项新的研究中,来自美国麻省理工学院(MIT)的研究人员开发出一种合成基因回路(gene circuit),当该基因回路检测到癌症的迹象时,它激活体内的免疫系统来攻击这种疾病。这种基因回路仅当它检测到两种特异性的癌症标志物时才会激活一种治疗反应。相关研究结果于2017年10月19日在线发表在Cell期刊上,论文标题为“Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer Immunotherapy”。 Lu、及其包括MIT博士后研究员Lior Nissim和Ming-Ru Wu在内的团队构建出一种编码在DNA中的能够区分癌细胞和非癌细胞的基因回路。这种基因回路能够经定制对不同的肿瘤作出反应。它是基于电子学中使用的简单的与门(AND gates)构建出的。这种与门仅当两种输入都存在时才会开启。 癌细胞与正常细胞的差异在于它们的基因表达谱。因此,这些研究人员开发出编码在这种基因回路中的合成启动子,即仅启动癌细胞中的基因表达的DNA序列。利用一种病毒,这种基因回路被运送到体内受影响的区域。肿瘤细胞中有活性的某些蛋白随后结合到这些合成启动子上,从而将它们激活。仅当这两种癌症启动子都被激活时,这种基因回路才会开启。这就允许这种基因回路比现存的疗法更加准确地靶向肿瘤,这是因为在作出反应之前,它需要两种癌症特异性的信号都存在。 当这些研究人员在体外测试这种基因回路时,他们发现它能够从其他的非癌卵巢细胞和其他的细胞类型中检测到卵巢癌细胞。他们随后在接受卵巢癌细胞移植的小鼠体内测试了这种基因回路,并证实它能够触发T细胞来寻找和杀死这些癌细胞,同时不会伤害它们周围的其他细胞。 4.Cell:来自野生小鼠的肠道细菌可改善实验室小鼠的健康 doi:10.1016/j.cell.2017.09.016 在一项新的研究中,研究人员报道接受野生小鼠肠道细菌移植的实验室小鼠要比拥有它们自己的肠道细菌的实验室小鼠能够显著更好地在致命性的流感病毒感染中存活下来和抵抗结直肠癌。相关研究结果于2017年10月19日在线发表在Cell期刊上,论文标题为“Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance”。论文通信作者为美国国家糖尿病、消化道疾病与肾脏疾病研究所(National Institute of Diabetes and Digestive and Kidney Diseases, NIDDK)肝脏疾病室免疫科主任Barbara Rehermann博士和NIDDK博士后研究员Stephan Rosshart博士。 实验室小鼠在严格控制的条件下经过精心培育、喂养和饲养,使得每只实验室小鼠具有可预测的性状和遗传特征。这在基础生物学研究中是一个很大的优势,但是产生这种可预测性意味着一种受控的环境,而不是来自外部世界的生存压力,影响着实验室小鼠的微生物群。因此,这些研究人员尝试着让实验室小鼠恢复它们失去的东西:天然地共同进化的野生小鼠肠道菌群。他们在马里兰州和哥伦比亚特区的8个地方捕获到800多只野生小鼠,从中找到健康的合适的候选对象用于提供它们的肠道菌群。 他们随后将野生小鼠(Mus musculus domesticus)和从多种来源获得的一种常见的实验室小鼠品种C57BL/6的肠道微生物组(即肠道菌群的宏基因组)进行测试和比较。他们证实C57BL/6小鼠具有与野生小鼠显著不同的肠道微生物组。 这些研究人员随后将野生小鼠的肠道菌群移植到怀孕的无菌的C57BL/6小鼠中。这些无菌的小鼠是在无菌的环境下长大的,没有它们自己的微生物组。为了对比,他们也将来自正常培养的C57BL/6小鼠的肠道菌群移植到作为对照组的一组怀孕的无菌的C57BL/6小鼠中。四代之后,这些小鼠仍然要么携带着野生小鼠的肠道微生物组,要么携带着从它们的母鼠祖先中遗传下来的实验室小鼠肠道微生物组。 当接触高剂量的流感病毒时,92%的携带着野生小鼠肠道微生物组的实验室小鼠存活下来,然而,在对照组中,仅17%的实验室小鼠存活下来。在其他的实验中,携带着野生小鼠肠道微生物组的实验室小鼠在患上诱导的结直肠瘤时具有更好的治疗结果,然而,作为对照组的实验室小鼠具有更多的肿瘤负荷和更加严重的疾病。野生小鼠肠道菌群的有益效果与这两种小鼠模型中的炎症减少相关联。 5.Cell:平均而言,一到十种突变足以促进癌症产生 doi:10.1016/j.cell.2017.09.042 在一项针对29种癌症类型的7500多种肿瘤的研究中,来自英国韦尔科姆基金会桑格研究所、欧洲生物信息学研究所和弗朗西斯-克里克研究所的研究人员首次对癌症产生所需的突变数量进行毫无偏见的估计。他们通过改进进化领域中的一种技术来证实平均而言,1~10种驱动突变(driver mutation)是癌症产生所必需的。这些结果也证实促进癌症产生的突变数量在不同的癌症之间存在着相当大的差异。相关研究结果于2017年10月19日在线发表在Cell期刊上,论文标题为“Universal Patterns of Selection in Cancer and Somatic Tissues”。论文通信作者为韦尔科姆基金会桑格研究所的Peter Campbell博士和Inigo Martincorena博士。 在这项研究中,这些研究人员从进化角度对29种不同癌症类型的7664种肿瘤中的自然选择进行量化。 这项研究的一个突出的发现是体内的细胞对突变耐受性良好。这是令人吃惊的,这是因为个人从父母那里遗传的突变经常是耐受性较差的,而且通常会随着时间的推移从人类中消失。然而,在人体的细胞中,随着癌症的产生,几乎所有的突变都会持续存在,但不会影响细胞的存活。 这些研究人员也对导致29种不同癌症类型的主要癌基因进行登记。他们发现了几个新的癌基因,并确定了当前的癌基因清单的完整程度。 Campbell博士说,“我们解决了一个长期存在的从上世纪五十年代就开始引发争论的问题:一个正常的细胞需要多少突变才能转化为一个癌细胞?答案是一小部分。比如,平均而言,每名患者中的大约4种突变会触发肝癌产生,然而结直肠癌通常需要大约10种驱动突变。” 6.Cell:揭示细胞质DNA诱发人类细胞炎性反应的分子机理 doi:10.1016/j.cell.2017.09.039 图片来源:Veit Hornung 近日,一项刊登在国际杂志Cell上的研究报告中,来自慕尼黑大学的研究人员通过研究阐明了细胞质DNA诱发人类细胞炎症的分子机制,值得注意的是,这其中所涉及的信号网络或许与小鼠机体中表现的不同。 在真核细胞中,DNA被限制在细胞核中,而细胞质中DNA的存在是细胞非常危险的一个信号,细胞质DNA可能源于病毒或细菌,其能够提示一种感染、内源性来源或组织损伤;因此,先天性免疫系统对细胞质DNA的识别会诱发广泛的炎症对抗和机体防御机制。本文研究中,研究人员通过研究阐明了一种特殊机制,这种机制能够促进人类细胞中的先天性免疫系统识别诸如这种异味的DNA,并且诱发炎性反应。 研究者Hornung解释道,我们对人类髓系细胞进行最新研究发现,这种受体在上述过程中扮演着关键角色,其能够以一种不同的方式来识别外援或异位的DNA,相比小鼠而言,人类髓系细胞的炎性小体分子能够通过一种名为cGAS-STING的识别机制来激活,从而就能够帮助诱导应对病毒DNA出现的先天性免疫反应。 目前研究者发现,cGAS-STING通路的激活能够诱发程序性细胞死亡,这并不依赖于抗病毒反应,当cGAS-STING通路激活超过一定阈值后,STING蛋白就会诱导溶酶体破碎,其造成的细胞损伤就会激活炎性小体,通过分泌白介素1来发送紧急求救信号,通过这种炎症反应,死亡的细胞就会向附近细胞发送警报,从而招募免疫细胞进入到紧急位点发挥作用。 7.Cell:揭示DNA的三维包装调节细胞身份机制 doi:10.1016/j.cell.2017.09.018 胞如何保持它的身份(比如成为肌肉细胞或神经细胞)的基本机制并没有完全得到理解。癌症等多种疾病与细胞在成熟过程中选择错误的发育通路相关联。在一项新的研究中,来自美国宾夕法尼亚大学佩雷尔曼医学院和西奈山伊坎医学院的研究人员提出干细胞分化为心肌细胞(以及其他的细胞类型)的能力依赖于基因组中哪些区域被激活,而这是由DNA在细胞核中的位置控制着的。相关研究结果于2017年10月12日在线发表在Cell期刊上,论文标题为“Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction”。论文通信作者为宾夕法尼亚大学佩雷尔曼医学院执行副主任、首席科学家Jonathan A. Epstein博士和宾夕法尼亚大学佩雷尔曼医学院心血管医学助理教授Rajan Jain博士。 这项研究也提示着了解控制干细胞在成熟期间如何快速地分化的方式对再生医学产生重要的影响。基因组的一些区域是无法表达的,这是因为它们被紧密地包裹在细胞核的内膜(即核纤层)上。这些被隔离和沉默的DNA区域被称作核纤层蛋白结合区域(lamin associated domains, LAD)。这项研究提示着这些位于细胞核边缘的特定DNA沉默区域有助确定细胞的身份。比如,如果LAD让神经元基因保持沉默而不会表达的话,那么这种细胞就不会成为神经元。然而,如果心脏细胞基因被释放出来而能够表达,就像在心脏发育过程中发生的那样,那么这些细胞就变成心肌细胞。多年来,细胞生物学家们就已知道在一些DNA在内核膜附近发现到,但是这种定位的功能是不清楚的。Jain说,“我们的研究提示着细胞通过将变成另一种细胞类型所必需的关键基因和程序储存在难以接近的区域中,确定着它的身份。换言之,细胞保持它的身份是通过抑制它变成其他的身份实现的。” 这些研究人员发现一种被称作组蛋白去乙酰化酶(Hdac3)的表观遗传酶将DNA附着到细胞核边缘上。Jain说,“我们问道:对DNA可接近性的精心控制会导致细胞变成某种细胞类型吗?”当他们在心脏细胞分化期间移除干细胞中的Hdac3时,它们释放含有心脏特异性基因的DNA区域,允许这些基因被激活,从而导致过早过快的分化。 8.Cell:全基因组测序揭示出自闭症新的基因变异 doi:10.1016/j.cell.2017.08.047 如今,在自闭症儿童中发现的基因组模式---细胞内完整的一套遗传指令---揭示这种出这种疾病的一种新的遗传特征。这种特征有助解释那些不存在自闭症其他遗传标记的病例。相关研究结果于2017年9月28日在线发表在Cell期刊上,论文标题为“Genomic Patterns of De Novo Mutation in Simplex Autism”。 这些研究人员对516名没有自闭症家族史的自闭症儿童(利用当前的测试方法未检测这些儿童存在遗传异常)进行基因组测序。他们也对这些儿童的父母和一名未受这种疾病影响的兄弟姐妹(总共2064人)进行基因组测序。这些遗传信息被储存在Simons Simplex Collection(SSC)数据库中。 Eichler团队鉴定出导致基因功能受到破坏和蛋白表达发生改变的基因变化,以及基因缺失,这些发生缺失的片段太小而不能够利用当前的测试方法检测到。他们也发现不含有基因的但可导致基因激活的基因组区域发生变化。Turner 说,Eichler和同事们在SSC数据库中对所有的这些变化进行了标记以至于其他人能够将这些发现作为一种资源。 这些研究人员随后对自闭症儿童和他们的未受这种疾病影响的兄弟姐妹的基因组变异数量进行比较。他们发现,自闭症儿童明显更可能具有三种或以上的不同类型的基因变异。Eichler说,这提示着零星的基因变异组合可能导致自闭症。但是,他强调道,在将特定的基因或基因组合用于诊断之前,科学家们还需要在更多的家庭中重复这些发现。 9.Cell:绘制出人基因组自我折叠的四维图谱 doi:10.1016/j.cell.2017.09.026 图片来自Cell, doi:10.1016/j.cell.2017.09.026。 在一项新的研究中,来自美国贝勒医学院、莱斯大学、斯坦福大学和布罗德研究所等研究机构的研究人员首次构建出高分辨率的人基因组折叠的四维图谱,这样当它随着时间的推移进行折叠时,就可对它进行追踪。这一发现可能会带来研究遗传疾病的新方法。相关研究结果发表在2017年10月5日的Cell期刊上,论文标题为“Cohesin Loss Eliminates All Loop Domains”。论文通信作者为贝勒医学院基因组结构中心主任Erez Lieberman Aiden博士。论文第一作者为斯坦福大学医学生、Aiden实验室成员Suhas Rao。 为了追踪这种折叠过程,这些研究人员首先破坏黏连蛋白(cohesin),即一种位于几乎所有已知的DNA环状结构周围的环形蛋白复合物。在2015年,他们已提出黏连蛋白通过一种挤压(extrusion)过程在细胞核中产生DNA环状结构。 Rao说,“我们发现当我们破坏黏连蛋白时,成千上万个DNA环状结构消失了。随后,当我们导入黏连蛋白时,所有的这些DNA环状结构又出现了,通常在几分钟内就完成了。这正是这种挤压模型所预测的那样,而且它提示着黏连蛋白沿着DNA移动的速度在任何已知的人蛋白中是最快的。” 但是并不是所有的事情都像这些研究人员预期的那样发生。在某些情况下,DNA环状结构发挥的作用与这些研究人员预期的完全相反。 Aiden说,“当我们观察到基因组上的成千上万个DNA环状结构变得更弱时,我们注意到一种有趣的模式。有一些奇怪的DNA环状结构变得更强。随后,当我们导入黏连蛋白时,大多数DNA环状结构重新出现,但是这些异常的DNA环状结构再次做相反的事情:它们消失了。” 通过仔细观察这些图谱如何随着时间的推移发生变化,这些研究人员意识到挤压并不是将相隔远处的DNA序列元件连接在一起的唯一机制。第二种被称作区室化(compartmentalization)的机制并不涉及黏连蛋白。 Rao解释道,“我们观察到的第二种机制与挤压完全不同。挤压倾向于一次将两个DNA序列元件连接在一起,而且仅当它们位于同一条染色体上时。第二种机制能够将大群的序列元件彼此间连接在一起,即便它们位于不同的染色体上,也是如此。它看起来似乎与挤压一样快速。” 10.Cell:鉴定出弥漫大B细胞淋巴瘤的驱动基因 doi:10.1016/j.cell.2017.09.027 在一项新的研究中,来自美国杜克大学癌症研究所等研究机构的研究人员正在努力更好地理解这种癌症的最为常见形式---弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma)---的基因基础,以及这些基因如何可能在患者对治疗作出的反应中发挥作用。 这些研究人员分析了来自1001名在过去10年已被确诊患上弥漫大B细胞淋巴瘤的患者的肿瘤样品。这些患者已在全球的12个研究机构中接受治疗。 利用全外显子组测序,这些研究人员确定了这种疾病的150个驱动基因,它们中的多数是新鉴定出的。他们随后进行测试以便观察这些基因是否与患者如何很好地对标准疗法作出反应之间存在任何关联。他们采用一种被称作CRISPR的基因组编辑技术敲除淋巴瘤细胞中的2万个基因中的每一个,以便鉴定出那些对淋巴瘤细胞生长至关重要的基因。通过评估遗传结果、CRISPR结果和临床结果,他们发现几种至关重要的基因关联可能有助指导治疗。相关研究结果发表在2017年10月5日的Cell期刊上,论文标题为“Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma”。 11.Cell:对肌肉浸润性膀胱癌进行综合的分子特征描述,有助改进疗法 doi:10.1016/j.cell.2017.09.007 在一项新的研究中,一个来自美国贝勒医学院、布莱根妇女医院、德州大学MD安德森癌症中心、不列颠哥伦比亚癌症研究中心和布罗德研究所等研究机构的研究人员完成了对412种肌肉浸润性膀胱癌样品的综合分子特征描述,从而导致他们鉴定出5种不同的膀胱癌亚型,每种亚型对特定的疗法具有不同的敏感性。这些结果可能导致人们在未来开发出个人化疗法。相关研究结果于2017年10月5日在线发表在Cell期刊上,论文标题为“Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer”。这些研究机构都是癌症基因组图谱研究网络(The Cancer Genome Atlas Research Network, TCGA研究网络)的一部分。 2014年,这些研究人员已在Nature期刊上发表了一项针对131种膀胱癌样品的研究的结果:首次对这种癌症发生的分子变化的“多组学(multi-omic)”特征进行综合性描述,这是个人化疗法取得的一次重大进展,也是TCGA研究网络项目的一种特点(Nature, 20 March 2014, doi:10.1038/nature12965)。这项新的研究对2014年的那项研究进行扩大,涉及更大的研究群体,整合了更多的基因组数据类型,并且对膀胱癌的分子亚型进行了细化。 论文共同通信作者、德州大学MD安德森癌症中心生物信息学与计算生物学系主任John N. Weinstein博士说,“在这项研究中,我们将研究的膀胱癌样品数量增加了3倍,从2014年的141种增加到2017年的412种,这导致鉴定出另外32种经常发生突变的基因,并且添加不太常见的但似乎参与这种癌症的突变。这些发生变化的基因为开发新的治疗干预提供了多种机会。膀胱癌是一种发生最高的突变率之一的癌症,而且它似乎表明APOBEC特征性突变与这种较高的突变负荷相关联,而且参与高达70%的膀胱癌。具有最高突变数量和较高APOBEC水平的肿瘤与具有高于平均的存活率相关联。” 此外,对多种分子参数(如突变、基因扩增、RNA和蛋白图谱)的整合揭示出膀胱癌能够被细分为4种亚型,但是在2014年,这些研究人员鉴定出了5种亚型。他们提出每种亚型可能与对治疗作出的独特反应相关联,而且这需要在未来的临床试验中加以验证。 12.Cell:突破性成果!科学家开发出能有效发现癌症药物的新方法 doi:10.1016/j.cell.2017.08.051 最近,一项刊登在国际著名杂志Cell上的研究报告中,来自斯克利普斯研究所的研究人员通过研究开发出了一种新型策略或有望帮助发现新型的抗癌疗法。研究人员利用这种新策略就能够寻找到对非小细胞肺癌(NSCLCs)生长非常重要的蛋白小型分子抑制剂,非小细胞肺癌在所有肺癌中占到了85%的比例,而且其对于药物疗法并不敏感。 本文研究中,研究人员运用蛋白质组学的策略发现了NSCLCs的潜在靶点,NSCLCs能够被转录因子NRF2的过度激活支持,NRF2能够扮演强大的抗氧化反应的分子开关,有些癌细胞会利用这种反应来保护自身免受损伤性氧化副产物的影响,这些副产物通常具有不寻常的代谢活性以及失控产生的特性。 随后研究者利用蛋白质组学平台鉴别出了NRF2驱动的NSCLCs细胞中蛋白质内部的半胱氨酸分子,通过抑制细胞中NRF2的表达,研究者就能够观察到半胱氨酸的活性是如何被改变的。大多数NRF2相关的反应性的改变都来源于NRF2缺失时这些蛋白产生所引发的改变,但20%的反应性的改变似乎取决于蛋白质的氧化性修饰,其是细胞中活性氧分子的积累所引发的结果。 研究者Bar-Peled说道,通常情况下我们会认为,诸如NRF2的转录因子能够通过改变没类的水平来调节酶类的功能,在很多情况下,NRF2似乎会改变酶类所处的环境使其能够更好地发挥功能。下一步研究人员计划在NSCLC细胞中利用一对儿高度选择性的半胱氨酸结合探针来鉴别潜在的可用作靶向药物的半胱氨酸,其或许会满足两个标准:首先,其反应性会随着NRF2的活性改变而改变,其次宿主蛋白仅能够在NRF2过度激活所驱动的NSCLC细胞中进行表达。 有意思的是,满足上述两个标准的有一个名为NR0B1的蛋白,正常情况下该蛋白能够在肺癌细胞核中发挥作用,其能够作为调节基因表达的蛋白复合体的一部分,通过对小分子化合物文库进行筛选,研究人员发现了两种化合物能够附着在NR0B1蛋白反应性的半胱氨酸上,从而引发蛋白复合体的破坏。随后研究人员利用这些化合物作为探针来研究NR0B1蛋白的功能,结果发现,该蛋白能够促进NRF2基因活性的表达程序,此外研究人员还利用这些化合物证明了靶向作用NR0B1蛋白是具有一定治疗效应的。 13.Cell:重大突破!发现视网膜中感知光线强度的神经元群体 doi:10.1016/j.cell.2017.09.005 图片来自Cell, doi:10.1016/j.cell.2017.09.005。 在一项新的研究中,来自美国波士顿儿童医院的研究人员描述了我们能够检测环境中的整体光照程度的一种意想不到的方式。他们发现眼睛视网膜中的神经元分工协作,从而使得特定的神经元经过调节对不同的光照强度范围作出反应。相关研究结果于2017年9月28日在线发表在Cell期刊上,论文标题为“A Population Representation of Absolute Light Intensity in the Mammalian Retina”。 不同于视网膜中主要用来检测形体和运动的视杆细胞和视锥细胞的是,专门用来检测“非图像(non-image)”视觉的其他感光神经元,被用来设置我们的生物钟,调节睡眠和控制激素水平。这些神经元被称作M1神经节感光细胞(M1 ganglion cell photoreceptors),即便在那些失明的人身上也能发挥作用。 Milner和Do发现尽管这些M1细胞似乎在视觉上彼此之间无法区分,但是它们经调节对不同的光照水平作出反应,而且当这些光照水平发生变化时,它们轮流向大脑发出信号。因此,大脑依据这些活跃的细胞的身份获得光照强度方面的信息,而不仅仅是信号大小。 有趣的是,这些M1细胞的轮流系统使用一种通常被认为异常的或病态的机制,即去极化阻断(depolarization block)。去极化阻断通常是在癫痫等某些疾病中观察到的。 当光照水平上升时,M1细胞中的一种被称作黑视蛋白(melanopsin)的蛋白捕获越来越多的光子。这会导致细胞膜电压变得更为正向,也就是“去极化”。随着细胞膜电压变得更为正向,这些M1细胞产生更多的电峰值(也称为动作电位),即发送到大脑中的信号。(生物谷 Bioon.com)
  • 《Nature杂志5月亮点研究盘点》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:黄翠
    • 发布时间:2017-06-02
    • 1 Nature:重磅!一些人胚胎干细胞系发生癌症相关突变 doi:10.1038/nature22312 根据一项新的研究,在用于基础研究或临床开发的140种人胚胎干细胞系当中,5种人胚胎干细胞系在肿瘤抑制基因TP53上获得突变。其中的两种人胚胎干细胞系H1和H9已用于人体中,不过还没有证据证实它们在受者体内导致癌症产生。相关研究结果于2017年4月26日在线发表在Nature期刊上,论文标题为“Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations”。 论文共同通信作者、美国哈佛大学研究员Kevin Eggan在新闻稿中说道,“我们的发现表明在产生干细胞和将它们用于下游的疗法开发期间,还应当进一步开展一系列质量控制检查。幸运的是,这些基因检查能够轻松地利用精确的、灵敏的、越来越廉价的测序方法加以执行。” Eggan团队在基因TP53上发现的6个突变影响p53蛋白的DNA结合区域。这个结合区域经常在人癌症中受到破坏。 2 Nature:癌症免疫疗法靶向实体瘤新突破 DOI: 10.1038/nature22311 基于T细胞的免疫疗法对于癌症的治疗提供了巨大的希望:在针对血液癌症的初期试验中已经取得了初步成功。然而,对于实体瘤的治疗来说目前仍然十分困难。最近发表在《Nature》杂志上的一项研究指出,IFN-gamma-T细胞分泌的一类信号分子能够切断肿瘤组织的血液供应,因而对于实体瘤治疗效果具有重要的影响。 免疫系统是机体抵抗疾病的有力武器,因此科学家们一直在寻找方法利用免疫系统攻击癌症。如今,研究者们找到了合适的方法。举例来说,通过将T细胞从患者体内分离出来,进行一系列的"训练",再导入患者体内,能够有效地杀伤肿瘤细胞。这一技术在初期临床试验中已经取得了成功,但仅仅局限于无法形成肿瘤块的癌症类型,例如血液癌症。 3 Nature:通过控制血管生长来开发治疗癌症等多种疾病的新型疗法 doi:10.1038/nature22322 最近,一项刊登在国际杂志Nature上的研究报告中,来自耶鲁大学的研究人员通过研究揭示了如何通过控制血管发育来帮助开发治疗心血管疾病以及癌症的新型疗法。 正常的血管生长会被诸如生长因子等蛋白质或激素所调节;在本文研究之前,研究人员并不清楚特殊的生长因子家族(FGFs)在调节血管生长发育过程中所扮演的角色,为了进行深入研究,研究者Michael Simons及其同事对工程化小鼠进行研究,他们对小鼠进行遗传工程化操作,使其血管内皮中缺少FGF信号。 研究者发现,FGFs能够诱导参与多种癌症发生的基因(c-Myc)进行表达,该基因能够开启一系列特殊的事件,从而调节血管内皮细胞的代谢,这项研究发现非常重要,因为其描述了生长因子和细胞代谢之间的关联,此前研究者并不清楚这种关联,同时这项研究也为研究人员后期开发治疗多种人类疾病的新型疗法提供了一定的研究基础。 4 CRISPR专利争夺者再放大招!Nature、Cell两篇文章发现10种用于疾病诊断的CRISPR酶 doi:10.1038/nature19802 最近来自加利福尼亚大学的研究人员通过研究描述了10种新型的CRISPR酶,这些酶一旦被激活其行为就像“吃豆人”一样能够“嚼碎”RNA,因此这些酶类或许能作为诊断传染性病毒的敏感检测器。这种新型的酶类是CRISPR蛋白—Cas13a的突变体,去年9月,来自伯克利的研究人员利用该蛋白实现了对来自病毒RNA的特异性序列进行检测,同时研究者表示,一旦CRISPR—Cas13a同其靶点RNA相结合后,其就会开始切割RNA,从而就能够轻松切掉和受体分子相关的RNA,并且产生荧光帮助研究者进行信号检测。 此前来自博德研究所的两个研究小组相继对CRISPR—Cas13a和RNA进行配对,并将构建好的新系统命名为SHERLOCK系统,该系统能够在极低浓度下对病毒的RNA进行检测,比如对登革热和寨卡病毒的RNA进行检测等。诸如这种系统就能够用来检测任何类型的RNA,包括癌细胞特异性的RNA。 5 Nature:令人意外!一种常见的脑血管疾病竟与肠道微生物组存在关联 doi:10.1038/nature22075 根据一项新的研究,来自美国宾夕法尼亚大学佩雷尔曼医学院的研究人员报道,肠道微生物组中的细菌促进颅内海绵状血管瘤(cerebral cavernous malformation, CCM)形成。这项研究提示着改变CCM病人的肠道微生物组可能是一种有效地治疗这种脑血管疾病的方法。相关研究结果于2017年5月10日在线发表在Nature期刊上,论文标题为“Endothelial TLR4 and the microbiome drive cerebral cavernous malformations”。论文通信作者为宾夕法尼亚大学心血管医学教授Mark Kahn博士。 在CCM中,大脑内的扩张性薄壁血管簇集在一起,能够导致中风和癫痫。在每100~200人当中,大约有1人患上CCM。这种疾病存在两种形式。一种形式是散发性CCM,占所有CCM病例的80%。剩下 的20%是家族性的遗传性CCM病例。 在2016年,Kahn实验室已发现血管内皮细胞中促进CCM形成的分子通路(Nature, 07 April 2016, doi:10.1038/nature17178)。在当前的这项研究中,Kahn团队发现这个分子通路是由TLR4激活的。TLR4是细菌分子脂多糖(LPS)的一种受体。LPS激活大脑血管内皮细胞表面上的TLR4会极大地加快CCM形成。相反地,如果通过基因手段将TLR4从血管内皮细胞中移除,或者如果小鼠接受阻断TLR4功能的药物的处理,那么就可阻止CCM形成。 6 Nature:重磅!揭示癌症免疫疗法抵抗癌症新机制 doi:10.1038/nature22396 已经证实抗蛋白PD-1和PD-L1抗体通过激活体内的T细胞(一种免疫细胞)来抵抗癌症。如今,在一项新的研究中,来自美国斯坦福大学医学院的研究人员证实这种疗法也以一种完全不同的方式抵抗癌症:促进巨噬细胞(另一种免疫细胞)吞噬和摧毁癌细胞。这些发现可能在改进和扩大这种癌症疗法中发挥着重要的意义。这项研究是以小鼠为研究对象的。相关研究结果于2017年5月17日在线发表在Nature期刊上,论文标题为“PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity”。论文通信作者为斯坦福大学医学院病理学系教授Irving Weissman博士。论文第一作者为Weissman实验室研究生Sydney Gordon。 PD-1是细胞表面上的一种蛋白受体,在保护身体免受过度活跃的免疫系统的破坏中发挥着重要的作用。T细胞学着检测和破坏受损的或病变的细胞,有时能够错误地攻击健康细胞,从而产生狼疮或多发性硬化症等自身免疫疾病。PD-1被称作“免疫检查点”,能够抑制高度活跃的T细胞,因此它们更不可能攻击健康组织。 7 Nature:重大突破!靶向BCAT1蛋白逆转白血病侵袭性 doi:10.1038/nature22314 在一项新的研究中,来自美国佐治亚大学和日本东京大学的研究人员鉴定出两种最为常见的骨髓性白血病的一种新的药物靶标,并且找到一种阻止这种疾病的最为侵袭性类型的方法。相关研究结果于2017年5月17日在线发表在Nature期刊上,论文标题为“Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia”。 通过阻断一种被称作BCAT1的蛋白,这些研究人员能够阻止小鼠体内和来自白血病患者的人血液样品中的癌细胞生长。 BCAT1蛋白激活一组被称作支链氨基酸(branched-chain amino acid, BCAA)的氨基酸代谢。BCAA是所有细胞中的必需构成单元,因而是侵袭性白血病细胞生长所必需的。BCAT1也促进脑瘤和肺瘤产生。 早期的研究已表明BCAT的功能是降解大多数健康组织中的BCAA。这项新的研究首次证实白血病细胞并不降解BCAA,而是利用BCAT1通路产生它们。通过阻断这种蛋白,这些研究人员能够逆转这种疾病的侵袭性。 8 Nature:重磅!利用血管内皮细胞制造出功能性的造血干细胞 doi:10.1038/nature22326 在一项新的研究中,来自美国威尔康奈尔医学院的研究人员开发出一种创新性方法:利用容易获得的血管内壁细胞无限制地供应健康的血细胞。相关研究结果于2017年5月17日在线发表在Nature期刊上,论文标题为“Conversion of adult endothelium to immunocompetent haematopoietic stem cells”。 论文通信作者、威尔康奈尔医学院安沙瑞干细胞研究所主任Shahin Rafii博士说,“这是一项改变游戏规则的突破,不仅让治疗血液疾病更接近一步,而且也揭示干细胞自我更新机制的复杂生物学性质。” 长期存活的造血干细胞(HSC)能够分化为所有类型的血细胞:白细胞、红细胞和血小板。几十亿个循环流通的血细胞并不会在体内长期地存活,因而必须得到持续补充。当这没有发生时,贫血、流血或危及生命的感染等严重性血液疾病就会发生。HSC的一种特殊的性质是它们也能够“自我更新”形成更多的HSC。这种性质允许仅几千个HSC产生一个人一生当中所需的所有血细胞。 科学家们长期以来希望找到一种方法让身体产生健康的HSC以便治愈这些血液疾病。但是在此之前,还没有人做到这一点,这部分是因为科学家们不能够设计出一种培育环境。仅在这种环境中,干细胞才能够转化为新的可长期存活的细胞。 9 Nature:里程碑突破!首次在实验室利用人多能性干细胞制造出造血干细胞 doi:10.1038/nature22370 在一项新的研究中,来自美国波士顿儿童医院等研究机构的研究人员首次在实验室中利用能够产生体内几乎任何一种细胞类型的多能性干细胞制造出人造血干细胞。这一进展为研究血液疾病的根本原因和利用病人自己的细胞产生用于治疗目的的免疫匹配性血细胞开辟新的途径。相关研究结果于2017年5月17日在线发表在Nature期刊上,论文标题为“Haematopoietic stem and progenitor cells from human pluripotent stem cells”。 论文通信作者、波士顿儿童医院干细胞移植项目主任George Daley博士说,“我们非常接近于在培养皿中产生真正的人造血干细胞。这项研究是20多年努力的结果。” 尽管利用这些多能性干细胞制造出的细胞是真正的造血干细胞和其他的细胞(即造血祖细胞)的混合物,但是当移植到小鼠体内时,它们能够产生多种类型的人血细胞。 10 Nature:揭示肺癌进化的关键步骤 doi:10.1038/nature22334 肺腺癌是一种侵袭性肺癌,大约占美国肺癌病例的40%。据认为,它是由良性的肺腺瘤产生的。 如今,在一项新的研究中,来自美国麻省理工学院的研究人员在肺癌进化中鉴定出一个重大的分子开关。当肺癌模式小鼠体内的肺腺瘤转化为肺腺癌时,这个开关会处于开启状态。他们也发现阻断这个开关会阻止肺腺瘤变得更具侵袭性。他们说,因此,干扰这个开关的药物可能适合用于治疗早期肺癌。相关研究结果于2017年5月10日在线发表在Nature期刊上,论文标题为“A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma”。