《探索 | 一种利用胶带机械剥离法获取二维金属氧化物的通用方法》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-10-09
  • 2024年10月3日,北京大学材料科学与工程学院刘磊副教授与合作者在Nature Synthesis期刊上发表了一篇题为“Mechanical exfoliation of non-layered metal oxides into ultrathin

    flakes”的研究成果。

    该成果报道了一种利用胶带机械剥离法获取二维金属氧化物的通用方法,实现了多种自支撑的二维非晶、多晶和单晶金属氧化物片层的制备,并展示其无损转移和与二维半导体的范德华集成。

    2004年Andre K. Geim博士和Konstantin

    S. Novoselov博士利用机械剥离法得到单原子层厚度的石墨烯(注:这一工作2010年获得了诺贝尔物理学奖),开启了之后二十年的二维材料研究热潮。作为二维材料的通用制备方法,机械剥离法的受众是本征的层状晶体;对于非层状的、z方向具备连续化学成键物质的机械减薄,目前依然没有通用的方法。作为一个有趣的科学问题,它早在上世纪80年代已经引起科学家的关注,如John W. Hutchinson博士和锁志刚博士在理论上开始研究在脆性材料中平行于表界面的裂纹扩展机制;而实验上探索三维材料减薄机制的工作鲜有进展。

    图1:二维非晶金属氧化物的机械剥离制备


    图2:二维非晶金属氧化物的电学器件研究

    近日,北京大学材料科学与工程学院刘磊课题组开发了一种发泡-剥离方法(授权专利:CN 114853038 B),通用制备多种的二维金属氧化物,包括单元和多元贫金属/过渡金属/镧系金属氧化物,厚度最薄至亚十纳米。通过将金属盐的热分解与水辅助发泡技术相结合,获得了大长径比的片层;利用胶带剥离这些片层即可产生独立、自支撑的二维薄片。

    进一步的理论研究表明,在机械剥离过程中,弯矩可以在事先存在的几何缺陷上引入集中的剪切应力,从而产生裂纹。裂纹通过纵向截面传播,进而实现厚度减薄,产生更薄的二维薄片。

    进一步研究发现,二维金属氧化物可以被无损转移,作为一个具备功能性(如high-k)的构建单元和二维半导体实现范德华集成,形成3D-2D异质结,并实现了70 mV dec-1的亚阈值摆幅和2.7 mV (MV cm-1)-1回滞的器件表现。

    该研究打破了机械剥离对于弱“层间”相互作用的要求,实现了二维金属氧化物的通用机械剥离制备,并拓展其在二维范德华异质结电学器件中的应用。该工作为研究无衬底限制、自支撑的超薄金属氧化物本征性质提供了一个平台,并为基于金属氧化物的二维功能器件提供了新的思路和方法。


  • 原文来源:https://www.nature.com/articles/s44160-024-00657-8
相关报告
  • 《中英日跨国团队用胶带机械剥离法成功解离出厚度在1-5nm的高质量二维单晶超导二硒化铌》

    • 来源专题:后摩尔
    • 编译者:shenxiang
    • 发布时间:2020-11-28
    • 据国家自然科学基金委官网11月25日报道,由复旦大学修发贤教授、沈健教授、郭航闻教授,英国曼彻斯特大学沙拉·黑格教授,以及日本东京大学永长直人教授组成的联合团队通力合作,在二维层状超导体研究领域取得进展,实现了基于二维超导二硒化铌的非互易天线器件。   近年来,二维层状单晶超导材料在国际上成为备受关注的研究重点。相较于传统非晶态、多晶态超导薄膜,二维层状单晶超导材料由于其极高的单晶质量,能将超导态保持到纳米级的原胞层厚度,这使得探测样品的本征二维超导的新奇属性成为可能,同时也为人们理解和调控低维超导态、超导量子相变等提供了新的研究平台。尽管二维层状单晶超导材料拥有丰富的量子现象,在新功能纳米器件方面亦拥有巨大潜在应用价值,但现阶段科研人员对二维层状单晶超导材料的研究大都集中在物理属性方面,基于二维层状单晶超导体的新功能器件研究处于起步阶段。   为了构建基于二维层状单晶超导体的新功能器件,该研究团队首先制备了高质量的单晶二硒化铌块材,并用胶带机械剥离法成功解离出厚度在1-5 nm的高质量二维单晶超导二硒化铌。有趣的是,通过输运测量发现,在超导温度以下,样品的二倍频磁阻等温曲线呈现多峰的反对称特点。通过进一步对不同电流下的二倍频磁阻信号分析研究发现,这是由对称性破缺造成的可逆电磁手性效应,该效应对应的双伽玛值(反映电磁手性效应的强度参数)远大于传统非超导体系。基于这种可逆电磁手性效应,研究团队设计制备了纳米尺度超导二硒化铌天线器件。在超导态下,由于二硒化铌中的涡旋在外电磁场驱动下获得了净速度,器件可以实现对外界施加的电磁波的信号的非互易可逆探测:当对天线器件辐射电磁波时,器件可以稳定的产生直流电压、电流信号,并持续稳定地对外界输出能量(做功)。同时,该器件可以实现对小到1微瓦的电磁波信号的探测,器件的探测频谱宽度可达5 MHz-900 MHz。这表明,二维层状单晶超导体对射频甚至更高频段的电磁波的能量采集、探测和识别等过程是一个非常好的器件实现平台。   纳米尺度的超导天线器件可以在极低温条件下工作,在未来超导量子计算电路中具有潜在的应用前景。该工作拓展了二维单晶超导体器件的研究方向,对新型二维单晶超导体的实际应用具有重要的推动作用。 该成果以“基于二硒化铌的超导非互易天线(Nonreciprocal Superconducting NbSe2 Antenna)”为题,于2020年11月6日在线发表在《自然·通讯》(《Nature Communications》)期刊上,文章链接:https://www.nature.com/articles/s41467-020-19459-5。
  • 《采用液态金属合成的二维金属氧化物》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-07
    • 柔性电子、微流体和其他尖端的工程应用利用二维(2D)金属氧化物。这些氧化物层是薄而有力的薄片,它们结合了氧化物的有用的大量电子性质和纳米材料的高表面积活性。虽然2D金属氧化物非常有用,但它们的合成本质上是困难和昂贵的。澳大利亚皇家墨尔本理工学院的Ali Zavabeti和同事希望通过室温液态金属合成过程来降低这些合成成本,同时还能获得以前不能生产的新2D氧化物。通过使用不同的镓合金作为溶剂,Zavabeti和他的同事们展示了一种低成本且可伸缩的过程,这种过程可以产生孤立的原子薄的二维金属氧化物。 这段视频展示了液态金属的新行为,这是澳大利亚墨尔本RMIT大学研究的一部分,它将彻底改变我们化学的方式。礼貌RMIT大学 其不同的电子性质和潜在的大表面积与体积比,使二维金属氧化物理想的候选者在柔性电子产品中使用。理想情况下,研究人员可以通过制造超薄的2D样品来最大限度地提高表面积与体积比。Zavabeti等人通过一种新型液态金属合成来实现这一目标。 该小组通过建立一种由HfO2组成的超薄电介质,并描述其电子特性,证明了他们的程序的有效性。这款介电装置具有一个降的电场值,比传统的HfO2设备高出三个数量级。此外,该装置的介电常数和带隙与体积HfO2相同。 Zavabeti和同事们用一种新的去角质技术准备了这种高功能的金属氧化物。他们准备了目标前体的熔体,例如Hf、Al、Gd和溶剂galinstan——一种含有镓、铟和锡的无毒金属合金。将熔体的液滴暴露在空气中,就可以氧化。最后,他们将形成的金属氧化物分离出来,例如,HfO2,Al2O3,或GdO2,通过简单地接触到液滴的基质。 通过高解析度透射电子显微镜(hr- tem)分析发现,纯金属氧化物层厚度约0.5 ~ 1nm。传统的沉积技术(如化学蒸汽),产生最小厚度约为5纳米的样品。此外,原子力显微镜(AFM)的分析表明,一个均匀的表面缺乏具有财产破坏性的针孔。 这种液态金属合成技术依赖于大多数金属和合金在室温下显示的自限原子薄氧化膜。热力学规定,产生最大的吉布斯自由能的氧化物将在表面上占主导地位。通过分析单个金属的吉布斯自由能,研究人员确定了合金溶剂和液态金属的组合物将产生靶金属氧化物。 研究人员还描述了一种液体悬浮技术,它们在金属熔体中产生气泡。在这个气泡中,目标金属氧化物被悬浮在水中。他们相信这两种合成方法将允许其他以前无法实现的金属氧化物的形成和特征,其中许多“由于其不同的电子、磁性、光学和催化性能而具有非凡的重要性”。 科学报道了全部细节。 ——文章发布于2017年11月3日