《中国科学院海洋研究所针对海洋遥感图像深度学习模型发展提出前瞻意见》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-08-06
  • 日前,中国科学院海洋研究所李晓峰、王凡,天津大学周圆合作在国际上首次提出了深度学习技术在海洋遥感图像信息挖掘的未来发展前景的观点文章。文章发表在Science伙伴期刊Journal of Remote Sensing上。

    在过去的几十年里,面向海洋研究的遥感卫星、传感器等信息采集方式越来越多。这为从大数据中挖掘信息带来了新的任务和挑战。近年来,深度学习技术的发展为解决大数据的信息挖掘需求提供了有力帮助。2020年,李晓峰领衔的人工智能海洋学团队证明了从海洋遥感图像中检索大部分信息可以使用现有的深度学习网络框架来完成,即用于语义分割的U-Net和用于目标检测的SSD (Single-shot Multibox Detect)。但随着研究的深度,现有的AI框架无法满足海洋信息挖掘的新需求,深度学习模型需要针对海洋遥感图像的特征进行针对性改进。

    文章提出,在下一步的深度学习海洋遥感图像模型的设计中,应从两个发展方向入手:一是深度学习模型的结构改进,在当前深度学习海洋遥感模型中加入各类注意力机制。注意机制强调全球和局部信息的结合,这也符合需要多尺度联合分析的海洋问题;二是建立基于领域知识(专家知识)指导的深度学习模型,通过海洋领域的理论知识可以降低输入数据维度的自由度,从而降低深度学习模型的训练难度,海洋领域知识可分为物理约束和时空数据处理方法,建立深度学习模型时使用多分支网络结构,可以将领域知识集成到模型中。

    文章指出,在未来的海洋遥感图像处理中,应将深度学习模型结构的先进性和领域知识 (专家知识)相结合。注意机制强调全局信息和局部信息的结合。海洋理论领域知识为深度学习模型提供了更准确的输入特征,降低输入数据维度的自由度。二者相互作用推动人工智能海洋学的发展。

    中国科学院海洋所李晓峰研究员为论文第一作者,王凡研究员为通信作者,合作者还包括天津大学周圆副教授。研究得到了中国科学院海洋大科学研究中心、中国科学院先导科技专项、山东省重大创新工程及国家自然科学基金项目等资助。

    文章信息

    Xiaofeng Li, Yuan Zhou, Fan Wang, "Advanced Information Mining from Ocean Remote Sensing Imagery with Deep Learning", Journal of Remote Sensing, vol. 2022, Article ID 9849645, 4 pages, 2022. https://doi.org/10.34133/2022/9849645

  • 原文来源:http://www.qdio.cas.cn/2019Ver/News/kyjz/202208/t20220801_6495835.html
相关报告
  • 《中国科学院海洋研究所在遥感观测数据补全研究取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-04-29
    • 近日,中国科学院海洋研究所李晓峰研究员团队在遥感观测数据补全研究中取得突破性成果。其研究成果以“GDCM: Generalized Data Completion Model for Satellite Observations”为题,发表于遥感领域国际期刊 Remote Sensing of Environment(SCI一区,影响因子11.1)。 研究团队提出了一种适用于多源遥感数据的通用补全模型:GDCM(Generalized Data Completion Model)。该模型基于时空卷积与注意力机制融合的深度学习框架,成功解决了卫星轨道覆盖间隙与云层遮挡导致的数据缺测问题,可高精度重建海表温度、风速、水汽、云液态水、降水率等关键海气变量,显著提升了遥感观测数据的完整性与实用性。 GDCM模型以连续7天的观测序列为输入,通过双尺度编码–解码结构捕捉局地与大尺度特征,利用注意力机制筛选关键时空依赖。实验表明,GDCM在复杂海洋环境下仍保持高稳定性,补全精度显著优于传统插值方法与现有AI模型,并在多类型、跨平台遥感数据补全任务中均表现出优异性能,具备良好的通用性和鲁棒性。 此外,GDCM采用逐步加深缺测比例的训练策略,使模型先理解完整场,再逐步适应严重缺测情境,有效提升了泛化能力。以热带不稳定波区域为例,GDCM几乎消除了预测偏差,重建效果稳定可靠。 本成果不仅在技术层面上推动了遥感观测数据智能重建方法的发展,也为未来气候变化监测、台风路径预报、极端事件识别等高时空分辨率应用场景提供了有力工具。 该论文第一作者为中国科学院海洋研究所王浩宇博士,李晓峰研究员为通讯作者,合作者还包括博士生周寅飞。研究工作得到国家自然科学基金和崂山实验室“十四五”重大项目支持。 论文信息: Wang,H.,Zhou,Y.,& Li,X*. (2025). GDCM: Generalized data completion model for satellite observations. Remote Sensing of Environment,324,114760. DOI: 10.1016/j.rse.2025.114760
  • 《中国科学院海洋研究所建立轻量化北极海冰密集度智能预报模型》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-05-31
    • 近日,由中国科学院海洋研究所研究员、IEEE Fellow李晓峰领衔的人工智能海洋学研究团队,基于近30年遥感观测的北极区域逐日海冰密集度数据,建立了数据驱动的海冰密集度智能化预报模型SICNet,实现了连续28天的北极海冰密集度预报,预报时间为秒级。SICNet对未来28天的平均海冰边界预报精度高于90%,优于气候异常持续的预报结果。相关成果近日发表于地球科学和遥感领域Top期刊IEEE Transactions on Geoscience and Remote Sensing (IEEE TGRS)(影响因子5.6)。 海冰密集度指海区内海冰面积所占百分比,是描述海冰的基础参数。天气以上尺度的逐日海冰密集度预报对于北极航道规划具有指导意义。传统海冰预报模式计算资源占用较大,且在天气以上尺度的预报精度衰减明显,预报精度低于气候态平均值。 SICNet以深度卷积网络为基本单元,融合时间卷积网络建立时空注意力模块,以更好地建立海冰密集度历史序列与未来序列的时空映射关系。SICNet以近7天海冰密集度历史数据为输入,输出未来7天海冰密集度,迭代3次预测未来28天的逐日海冰密集度,预报时间为秒级。SICNet对未来7天海冰密集度预报的平均绝对误差为2.67%,连续28天预报的平均海冰边界预报精度(BACC)基本保持在90%以上,明显优于气候异常持续(Persist)。 该研究表明,依托深度学习的复杂时空关系建模能力,可实现数据驱动的天气以上尺度北极海冰密集度的准确、快速预报,为次季节至季节尺度的逐日海冰密集度预报提供了参考。未来,针对单个海冰参数的预报,基于深度学习的智能化预报模型具有轻量化、高精度的特点,将成为数值模式海冰预报的重要补充。 上述研究工作得到了中国科学院海洋大科学研究中心、中国科学院战略性先导科技专项、山东省重大创新工程及国家自然科学基金项目等资助。中国科学院海洋所任沂斌博士为论文第一作者,李晓峰研究员为通信作者,合作者还包括中国科学院海洋所张雯皓博士。 论文信息:   Yibin Ren, Xiaofeng Li*, Wenhao Zhang, A data-driven deep learning model for weekly sea ice concentration prediction of the Pan-Arctic during the melting season, IEEE Transactions on Geoscience and Remote Sensing, 2022, doi: 10.1109/TGRS.2022.3177600. https://ieeexplore.ieee.org/document/9780401